Torch-TensorRT 2.4 Windows 支持中的 C++ 运行时支持、转换器中增强的动态形状支持

Torch-TensorRT 2.4 Windows 支持中的 C++ 运行时支持、转换器中增强的动态形状支持

Torch-TensorRT 2.4.0 面向 PyTorch 2.4、CUDA 12.4(可通过 PyTorch 包索引获取 CUDA 11.8/12.1 的版本 - https://download.pytorch.org/whl/cu118 https://download.pytorch.org/whl/cu121)和 TensorRT 10.1。
此版本引入了对 Windows 平台上 C++ 运行时的官方支持,但仅限于 dynamo 前端,支持 AOT 和 JIT 工作流。用户现在可以在 Windows 上使用 Python 和 C++ 运行时。此外,此版本扩展了支持范围,包括所有 Aten Core 运算符(torch.nonzero 除外),并显著增加了更多转换器的动态形状支持。此版本首次支持 Python 3.12。

完全支持 Windows

在此版本中,我们在 Windows 中引入了 C++ 和 Python 运行时支持。用户现在可以直接在 Windows 上使用 TensorRT 优化 PyTorch 模型,无需更改代码。C++ 运行时是默认选项,用户可以通过指定 use_python_runtime=True 来启用 Python 运行时

import torch
import torch_tensorrt
import torchvision.models as 
<think>嗯,用户想了解如何在Torch-TensorRT支持动态输入。首先,我需要回忆一下Torch-TensorRT的相关文档。记得动态输入在推理中很重要,尤其是处理不同尺寸的输入,比如图像或序列数据。用户可能需要配置模型以接受不同形状的输入,而不需要重新编译。 首先,动态输入的支持通常涉及到在模型转换指定输入的维度范围。Torch-TensorRT是基于PyTorch的,所以应该会有相应的API设置。可能需要使用`torch_tensorrt.Input`类来定义输入的min、opt、max形状。例如,指定最小、优化和最大尺寸,这样TensorRT可以优化这些范围内的内核。 然后,配置示例部分。用户可能需要一个具体的代码示例,展示如何将PyTorch模型转换为Torch-TensorRT模型并启用动态输入。比如,使用`torch_tensorrt.compile`函数,并传入输入配置。代码中应该包含如何定义输入的动态维度,比如在batch size或图像尺寸上使用-1表示动态。 还需要注意是否需要在导出ONNX模型设置动态轴。虽然用户的问题是关于Torch-TensorRT的,但ONNX导出可能是一个相关步骤。比如,在导出模型使用`dynamic_axes`参数来指定哪些维度是动态的。这可能与Torch-TensorRT的配置有关联,需要确认是否需要同处理。 另外,参考用户提供的引用,特别是引用[4]提到ONNX解析器需要EXPLICIT_BATCH标志。这说明在导入ONNX模型到TensorRT,必须启用这个标志来处理动态批次。因此,在Torch-TensorRT的流程中,可能需要确保模型在导出和编译正确处理显式批次。 还有动态输入的验证部分。用户可能想知道如何测试动态输入是否生效,例如用不同尺寸的输入进行推理,检查是否有错误或性能变化。需要建议用户进行多尺寸测试,并监控内存使用情况。 最后,要提到可能的限制,比如某些层可能不支持动态输入,或者性能优化在不同尺寸下的差异。引用[3]提到模型不支持的情况,可能需要用户注意模型结构是否兼容动态输入。 总结步骤应该是:1. 使用Input类定义动态范围;2. 编译模型传入配置;3. 验证不同输入尺寸;4. 注意ONNX导出和显式批处理设置。然后给出代码示例和注意事项。</think>在Torch-TensorRT中实现对动态输入的支持需要以下配置方法: ### 一、动态输入配置步骤 1. **定义输入范围** 使用`torch_tensorrt.Input`指定输入张量的最小/优化/最大形状范围,支持动态batch size和动态维度: ```python inputs = [ torch_tensorrt.Input( min_shape=[1, 3, 224, 224], opt_shape=[4, 3, 224, 224], max_shape=[8, 3, 224, 224] ) ] ``` 2. **模型编译配置** 在`torch_tensorrt.compile`中设置`enabled_precisions`和动态输入参数: ```python trt_model = torch_tensorrt.compile(model, inputs=inputs, enabled_precisions={torch.float32, torch.float16}, truncate_long_and_double=True ) ``` 3. **动态维度标记** 在输入维度中使用`-1`表示动态轴: ```python inputs = [torch_tensorrt.Input(shape=(-1, 3, 224, 224))] ``` ### 二、完整示例代码 ```python import torch import torch_tensorrt # 定义PyTorch模型 class Model(torch.nn.Module): def forward(self, x): return torch.nn.functional.relu(x) model = Model().eval() # 动态输入配置 inputs = [torch_tensorrt.Input( min_shape=[1, 3, 224, 224], opt_shape=[4, 3, 224, 224], max_shape=[8, 3, 224, 224] )] # 编译为TensorRT引擎 trt_model = torch_tensorrt.compile( model, inputs=inputs, enabled_precisions={torch.float32}, workspace_size=1 << 30 ) # 测试动态推理 for bs in [1, 4, 8]: test_input = torch.randn(bs, 3, 224, 224) output = trt_model(test_input) ``` ### 三、关键注意事项 1. **显式批处理要求** 必须启用`EXPLICIT_BATCH`标志(默认已启用),这是TensorRT处理动态shape的前提条件[^4] 2. **性能优化建议** - 将最常用尺寸设为`opt_shape` - 不同shape范围应保持相同的维度数量 - 动态维度不宜超过实际需求范围 3. **限制条件** 部分算子(如固定尺寸的reshape操作)可能限制动态输入支持,需通过`trt_layer`查看层支持情况[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扫地的小何尚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值