题目描述
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 从位置 0 到 1 跳 1 步, 然后跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
题解
该题的解法是仿照跳跃游戏II,仍是寻找每一跳能跳到的最远的位置。但不用计算step,当目前跳到的最远位置能到达(或超过)最后一个位置,则认为可以到达返回结果 为true。
代码
/*
时间复杂度为:o(n)
空间复杂度为:o(1)
*/
class Solution {
public:
bool canJump(vector<int>& nums) {
int beg = 0, end = 0, max_pos = 0, flag = false;
//特殊情况
if(nums.size() == 1){
return true;
}
while(end < nums.size() - 1){
max_pos = 0;
for(int i = beg; i <= end; ++i){
max_pos = max(max_pos, i + nums[i]);
}
beg = end + 1;
end = max_pos;
if(beg > end){
break;
}
else if(max_pos >= nums.size() - 1){//跳到最远位置能到达nums.size() - 1
flag = true;
break;
}
}
return flag;
}
};
执行结果
代码优化
参照题解,思路相同,但代码写的很简约。
bool canJump(vector<int>& nums)
{
int k = 0;
for (int i = 0; i < nums.size(); i++)
{
if (i > k) return false;
k = max(k, i + nums[i]);
}
return true;
}
题解(贪心法)
用一个坐标表示当前可达最后的下标,从右向下遍历完成,若从最后可达的下标为0,表示从0处可以跳到最后的位置。
代码
/*
贪心法
时间复杂度为:o(n)
空间复杂度为:o(1)
*/
class Solution {
public:
bool canJump(vector<int>& nums) {
int len = nums.size();
int last_pos = len - 1;
for(int i = len - 1; i >= 0; --i){
if(i + nums[i] >= last_pos){
last_pos = i;
}
}
return last_pos == 0;
}
};