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Abstract. The Convolutional Neural Network (CNN) based region pro-
posal generation method (i.e. region proposal network), trained using
bounding box annotations, is an essential component in modern fully su-
pervised object detectors. However, Weakly Supervised Object Detection
(WSOD) has not benefited from CNN-based proposal generation due to
the absence of bounding box annotations, and is relying on standard
proposal generation methods such as selective search. In this paper, we
propose a weakly supervised region proposal network which is trained us-
ing only image-level annotations. The weakly supervised region proposal
network consists of two stages. The first stage evaluates the objectness
scores of sliding window boxes by exploiting the low-level information in
CNN and the second stage refines the proposals from the first stage using
a region-based CNN classifier. Our proposed region proposal network is
suitable for WSOD, can be plugged into a WSOD network easily, and
can share its convolutional computations with the WSOD network. Ex-
periments on the PASCAL VOC and ImageNet detection datasets show
that our method achieves the state-of-the-art performance for WSOD
with performance gain of about 3% on average.

Keywords: Object detection, region proposal, weakly supervised learn-
ing, convolutional neural network

1 Introduction

Convolutional Neural Networks (CNNs) [22, 24] in conjunction with large scale
datasets with detailed bounding box annotations [14,26,32] have contributed to
a giant leap forward for object detection [15, 16, 30, 37, 43]. However, it is very
laborious and expensive to collect bounding box annotations. By contrast, im-
ages with only image-level annotations, indicating whether an image belongs to
an object class or not, are much easier to acquire (e.g., using keywords to search



2 P. Tang et al.

I

PRCPG

Conv

0 1 2

WSOD

Region Proposal Network

Fig. 1. The overall network architecture. “I”: input image; “P0”: the initial proposals
by sliding window, “P1”: the proposals from the first stage of the network, “P2”: the
proposals from the second stage of the network, “D”: the detection results, “Conv”:
convolutional layers, “CPG”: coarse proposal generation, “PR”: proposal refinement,
“WSOD”: weakly supervised object detection

on the Internet). Inspired by this fact, in this paper we focus on training ob-
ject detectors with only image-level supervisions, i.e., Weakly Supervised Object
Detection (WSOD).

The most popular pipeline for WSOD has three main steps [4,5,9,12,20,21,
25, 34, 38, 39, 42]: region proposal generation (shortened to proposal generation)
to generate a set of candidate boxes that may cover objects, proposal feature
extraction to extract features from these proposals, and proposal classification
to classify each proposal as an object class, or background. Various studies fo-
cus on proposing better proposal classification methods [4, 9, 41, 42]. Recently,
some methods have trained the last two steps jointly and have achieved great
improvements [5, 21, 38,39].

But most of the previous studies only use standard methods, e.g. selective
search [40] and Edge Boxes [46], to generate proposals. A previous work [17] has
shown that the quality of the proposals has great influence on the performance
of fully supervised object detection (i.e., using bounding box annotations for
training). In addition, the CNN-based region proposal generation method (i.e.
region proposal network) [30] is an essential component in the state-of-the-art
fully supervised object detectors. These motivate us to improve the proposal
generation method, in particular to propose CNN-based methods for WSOD.

In this paper, we focus on proposal generation for WSOD, and propose a
novel weakly supervised region proposal network which generates proposals by
CNNs trained under weak supervisions. Due to the absence of bounding box
annotations, we are unable to train a region proposal network end-to-end as in
Faster RCNN [30]. Instead, we decompose the proposal network into two stages,
where the first stage is coarse proposal generation which generates proposals P1

from sliding window boxes P0 (|P0| > |P1|), and the second stage is proposal
refinement which refines proposals P1 to generate more accurate proposals P2

(|P1| > |P2|). The proposals P2 are fed into the WSOD network to produce
detection results D. In addition, the proposal network and the WSOD network
are integrated into a single three-stage network, see Fig. 1.
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Fig. 2. The responses of different convolutional layers from the VGG16 [36] network
trained on the ImageNet [32] dataset using only image-level annotations. Results from
left to right are original images, response from the first to the fifth layers, and the
fusion of responses from the second layer to the fourth layer

The first stage of our method is motivated by the intuition that CNNs trained
for object recognition contain latent object location information. For example,
as shown in Fig. 2, the early convolutional layers concentrate on low-level vision
features (e.g. edges) and the later layers focus on more semantic features (e.g.
object itself). Because the first and fifth convolutional layers also have high
responses on many non-edge regions, we exploit the low-level information only
from the second to the fourth convolutional layers to produce edge-like responses,
as illustrated in Fig. 2. More specifically, after generating initial proposals P0

from an exhaustive set of sliding window boxes, these edge-like responses are used
to evaluate objectness scores of proposals P0 (i.e. the probability of a proposal
being an object), following [46]. Then we obtain some proposals P1 accordingly.

However, the proposals generated above are still very coarse because the early
convolutional layers also fire on background regions. To address this, we refine
the proposals P1 in the second stage. We train a region-based CNN classifier,
which is a small WSOD network [38], using P1, and adapt the network to distin-
guish whether P1 are object or background regions instead of to detect objects.
The objectness scores of proposals in P1 are re-evaluated using the classifier.
Proposals with high objectness scores are more likely to be objects, which gen-
erates the refined proposals P2. We do not use the region-based CNN classifier
on the sliding window boxes directly, because this requires an enormous number
of sliding window boxes to ensure high recall and it is hard for a region-based
CNN classifier to handle such a large number of boxes efficiently.

The proposals P2 are used to train the third stage WSOD network to pro-
duce detection results D. To make the proposal generation efficient for WSOD,
we adapt the alternating training strategy in Faster RCNN [30] to integrate the
proposal network and the WSOD network into a single network. More precisely,
we alternate the training of the proposal network and the WSOD network, and
share the convolutional features between the two networks. After that, the con-
volutional computations for proposal generation and WSOD are shared, which
improves the computational efficiency.
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Elaborate experiments are carried out on the challenging PASCAL VOC [14]
and ImageNet [32] detection datasets. Our method obtains the state-of-the-art
performance on all these datasets, e.g., 50.4% mAP and 68.4% CorLoc on the
PASCAL VOC 2007 dataset which surpass previous best performed methods by
more than 3%.

In summary, the main contributions of our work are listed as follows.

– We confirm that CNNs contain latent object location information which we
exploit to generate proposals for WSOD.

– We propose a two-stage region proposal network for proposal generation in
WSOD, where the first stage exploits the low-level information from the
early convolutional layers to generate proposals and the second stage is a
region-based CNN classifier to refine the proposals from the first stage.

– We adapt the alternating training strategy [30] to share convolutional com-
putations among the proposal network and WSOD network for testing ef-
ficiency, and thus the proposal network and WSOD network are integrated
into a single network.

– Our method obtains the state-of-the-art performance on the PASCAL VOC
and ImageNet detection datasets for WSOD.

2 Related Work

Weakly Supervised Object Detection/Localization. WSOD has attracted
a great deal of attention in recent years [4, 5, 9, 12, 20, 21, 34, 38, 39, 41, 42]. Most
methods adopt a three step pipeline: proposal generation, proposal feature ex-
traction, and proposal classification. Based on this pipeline, many variants have
been introduced to give better proposal classification, e.g., multiple instance
learning based approaches [4, 9, 34, 39, 42]. Recently, inspired by the great suc-
cess of CNNs, many methods train a WSOD network by integrating the last
two steps (i.e. proposal feature extraction and proposal classification) into a
single network [5, 12, 21, 38]. These networks show more promising results than
the step-by-step ones. However, most of these methods use off-the-shelf meth-
ods [40, 46] for the proposal generation step. Unlike them, we propose a better
proposal generation method for WSOD. More specifically, we propose a weakly
supervised region proposal network which generates object proposals by CNN
trained under weak supervisions, and integrate the proposal network and WSOD
network into a single network. This relates to the work by Diba et al. [12] who
propose a cascaded convolutional network to select some of the most reliable
proposals for WSOD. They first generate a set of proposals by Edge Boxes [46],
and then choose a few most confident proposals according to class activation
map from [44] or segmentation map from [2]. These chosen proposals are used to
train multiple instance learning classifiers. Unlike them, we use CNN to generate
proposals, and refine proposals using region-based CNN classifiers. In fact, their
network can be used as our WSOD network.

Recently, some studies show a similar intuition that CNNs trained under
weak supervisions contain object location information and try to localize ob-
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jects without proposals [10,18,27,35,44,45]. For example, Oquab et al. [27] train
a max-pooling based multiple instance learning network to localize objects. But
they can only give coarse locations of objects which are independent of object
sizes and aspect ratios. The methods in [10, 35, 44, 45] localize objects by first
generating object score heatmaps and then placing bounding boxes around the
high response regions. However, they mainly test their methods on the ImageNet
localization dataset which contains a large portion of iconic-object images (i.e.,
a single large object located in the center of an image). Considering that natural
images (e.g. images in PASCAL VOC) contain several different objects located
anywhere in the image, the performance of these methods can be limited com-
pared with the proposal-based methods [5,12,21,38]. Zhu et al. [45] also suggest
a soft proposal method for weakly supervised object localization. They use a
graph-based method to generate an objectness map that indicates whether each
point on the map belongs to an object or not. However, the method cannot
generate “real” proposals, i.e., generate boxes which cover as many as possible
objects in images. Our method differs from these methods in that we generate
a set of proposals using CNNs which potentially cover objects tightly (i.e., have
high Intersection-over-Union with groundtruth object boxes) and use the pro-
posals for WSOD in complex images. In addition, all these methods focus on the
later convolutional layers that contain more semantic information, whereas our
method exploits the low-level information from the early layers.

Region Proposal Generation. There are many works focusing on region pro-
posal generation [6, 29, 40, 46], where Selective Search (SS) [40] and Edge Boxes
(EB) [46] are two most commonly used proposal generation methods for WSOD.
The SS generates proposals based on a superpixel merging method. The EB gen-
erates proposals by first extracting image edges and then evaluating the object-
ness scores of sliding window boxes. Our method follows the EB for objectness
score evaluation in the first stage. But unlike EB which adopts edge detectors
trained on datasets with pixel-level edge annotations [13] to ensure high pro-
posal recall, we exploit the low-level information in CNNs to generate edge-like
responses, and use a region-based CNN classifier to refine the proposals. Exper-
imental results show that our method obtains much better WSOD performance.

There are already some CNN-based proposal generation methods [23,28,30].
For example, the Region Proposal Network (RPN) [30] uses bounding box anno-
tations as supervisions to train a proposal network, where the training targets
are to classify some sliding window style boxes (i.e. anchor boxes) as object or
background and regress the box locations to the real object locations. These
RPN-like proposals are standard for recent fully supervised object detectors.
However, to ensure their high performance, these methods require bounding box
annotations [23,31] and even pixel-level annotations [28] to train their networks,
which deviates from the requirement of WSOD that only image-level annota-
tions are available during training. Instead, we show that CNNs trained under
weak supervisions have the potential to generate very satisfactory proposals.

Others. The works by [3, 33] also show that the different CNN layers contain
different level visual information. Unlike our approach, Bertasius et al. [3] aim
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Fig. 3. The detailed architecture of our network. The first stage “Coarse Proposal Gen-
eration” produces edge-like responses which can evaluate objectness scores of sliding
window boxes P0 to generate coarse proposals P1. The second stage “Proposal Refine-
ment” uses a small region-based CNN classifier to re-evaluate the objectness scores of
each proposal in P1 to get refined proposals P2. The third stage “Weakly Supervised
Object Detection” uses a large region-based CNN classifier to classify each proposal in
P2 as different object classes or background, to produce the object detection results.

The proposals Pt, t ∈ {0, 1, 2} consist of boxes {btn}
N

t

n=0 and objectness scores {otn}
N

t

n=0

to fuse information from different layers for better edge detection which requires
pixel-level edge annotations for training. Saleh et al. [33] choose more semantic
layers (i.e. later layers) as foreground priors to guide the training of weakly
supervised semantic segmentation, whereas we show that the low-level cues can
be used for proposal generation.

3 Method

The architecture of our network is shown in Fig. 1 and Fig. 3. Our architecture
consists of three stages during testing, where the first and second stages are the
region proposal network for proposal generation and the third stage is a WSOD
network for object detection. For an image I, given initial proposals P0 which
are an exhaustive set of sliding window boxes, the coarse proposal generation
stage generates some coarse proposals P1 from P0, see Section 3.1. The proposal
refinement stage refines the proposals P1 to generate more accurate proposals
P2, see Section 3.2. The WSOD stage classifies the proposals P2 to produce the
detection results, see Section 3.3. The proposals consist of bounding boxes and
objectness scores, i.e., Pt = {(btn, o

t
n)}

Nt

n=1, t ∈ {0, 1, 2}, where btn and otn are
the box coordinates and the objectness score of the n-th proposal respectively.
o0n = 1, n ∈ {1, ..., N0} because we have no prior knowledge on the locations
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of objects so we consider that all initial proposals have equal probability to
cover objects. To share the conv parameters among different stages, we use an
alternating training strategy, see Section 3.4.

3.1 Coarse Proposal Generation

Given the initial proposals P0 = {(b0n, o
0
n)}

N0

n=1 of image I which are an exhaustive
set of sliding window boxes with various sizes and aspect ratios, together the
conv features of the image, the coarse proposal generation stage evaluates the
objectness scores of these proposals coarsely and filters out most of the proposals
that correspond to background. This stage needs to be very efficient because the
number of initial proposals is usually very large (hundreds of thousands or even
millions). Here we exploit the low-level information, more specifically the edge-
like information from the CNN for this stage.

Let us start from Fig. 2. This visualizes the responses from different conv
layers of the VGG16 network [36] trained on the ImageNet classification dataset
(with only image-level annotations). Other networks have similar results and
could also be chosen as alternates. Specially, we pass images forward through
the network and compute the average value over the channel dimension for each
conv layer to obtain five response maps (as there are five conv layers). Then these
maps are resized to the original image size and are visualized as the second to
the sixth columns in Fig. 2. As we can see, the early layers fire on low-level
vision features such as edges. By contrast, the later layers tend to respond to
more semantic features such as objects or object parts, and the response maps
from these layers are similar to the saliency map. Obviously, these response maps
provide useful information to localize objects. Here we propose to make use of
the second to the fourth layers to produce edge-like response maps for proposal
generation, as shown in Fig. 3.

More specifically, suppose the output feature map from a conv layer is F ∈
R

C×W×H , where C,W,H are the channel number, weight, and height of the
feature map respectively. Then the response map R ∈ R

W×H of this layer is
obtained by Eq. (1) which computes the average over the channels first and the
normalization then, where fcwh and rwh are elements in F and R respectively.

rwh =
1

C

C
∑

c=1

fcwh, rwh ←
rwh

max
w′,h′

rw′h′

. (1)

As we can see in Fig. 2, both the second to the fourth conv layers have high
responses on edges and relative low responses on other parts of the image. Hence
we fuse the response maps from the second to the fourth conv layers by first
resizing them to the original image size and sum them up, see the 7th column in
Fig. 2 for examples. Accordingly we obtain the edge-like response map. We do
not choose the response maps from the first and the fifth conv layers, because
the former has high responses on most of the image regions and the later tends
to fire on the whole object instead of the edges.
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After obtaining the edge-like response map, we evaluate the objectness scores
of the initial proposals P0 by using the Edge Boxes (EB) [46] to count the
number of edges that exist in each initial proposal. More precisely, we follow
the strategies in EB to generate P0, evaluate objectness scores, and perform
Non-Maximum Suppression (NMS), so this stage is as efficient as Edge Boxes.
Finally, we rank the proposals according to the evaluated objectness scores and
choose N1 (N1 < N0) proposals with the highest objectness scores. Accordingly

we obtain the first stage proposals P1 = {(b1n, o
1
n)}

N1

n=1.
In fact, the edge-like response map generated here is not the “real” edge in the

sense of the edges generated by a fully supervised edge detector [13]. Therefore,
directly using EB may not be optimal. We suspect that this stage can be further
improved by designing more sophisticated proposal generation methods that
consider the characteristics of the edge-like response map. In addition, responses
from other layers can also be used as cues to localize objects, such as using
saliency based methods [1]. Exploring these variants is left to future works and
in this paper we show that our simple method is sufficient to generate satisfactory
proposals for the following stages.

No direct loss is required in this stage and any trained network can be chosen.

3.2 Proposal Refinement

Proposals generated by the coarse proposal generation stage are still very noisy
because there are also high responses on the background regions of the edge-like
response map. To address this, we refine proposals using a region-based CNN
classifier to re-evaluate the objectness scores, as shown in Fig. 1 and Fig. 3.

Given the proposals P1 = {(b1n, o
1
n)}

N1

n=1 from the first stage and the conv
features of the image, the task of the proposal refinement stage is to compute the
probability that each proposal box b1n covers an object using a region-based CNN
classifier f(I, b1n), to re-evaluate the objectness score õ1n = h

(

o1n, f(I, b
1
n)
)

, and
to reject proposals with low scores. To do this, we first extract the conv feature
map of b1n and resize it to 512× 3× 3 using the RoI pooling method [15]. After
that, we pass the conv feature map through two 256-dimension Fully Connected
(FC) layers to obtain the object proposal feature vector. Finally, an FC layer
and a softmax layer are used to distinguish whether the proposal is object or
background (we omit the softmax layer in Fig. 3 for simplification). Accordingly

we obtain proposals P̃1 = {(b1n, õ
1
n)}

N1

n=1 with re-evaluated objectness score õ1n.
Here we use a simple multiplication to compute h(·, ·) as in Eq. (2).

õ1n = h
(

o1n, f(I, b
1
n)
)

= o1n · f(I, b
1
n). (2)

There are other possible choices like addition, but we find that multiplication
works well in experiments.

To get final proposals we can simply rank the proposals according to the ob-
jectness score õ1n and select some proposals with top objectness scores. But there
are many redundant proposals (i.e. highly overlapped proposals) in P̃1. There-
fore, we apply NMS on P̃1 and keep N2 proposals with the highest objectness
scores. Accordingly we obtain our refined proposals P2 = {(b2n, o

2
n)}

N2

n=1.
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To train the network using only image-level annotations, we train the state-of-
the-art WSOD network given in [38], and adapt the network to compute f(I, b1n)
instead of to detect objects. The network in [38] has a multiple instance learning
stream which is trained by an image classification loss, and some instance clas-
sifier refinement streams which encourage category coherence among spatially
adjacent proposals. The loss to train the network in the second stage network
has the form of L2(I,y,P1;Θ2), where y is the image-level annotation and Θ2

represents the parameters of the network. Please see [38] for more details. Other
WSOD networks [5,12,21] can also be chosen as alternates. Specially, the output
of proposal box b1n by [38] is a probability vector p1

n = [p1n0, ..., p
1
nK ], where p1n0

is for background, p1nk, k > 0 is for the k-th object class, and K is the number
of object classes. We transfer this probability to the probability that b1n covers

an object by f(I, b1n) = 1− p1n0 =
∑K

k=1 p
1
nk. We use a smaller network than the

original network in [38] to ensure the efficiency.

3.3 Weakly Supervised Object Detection

The final stage, i.e. WSOD, classifies proposals P2 into different object classes,
or background. This is our ultimate goal. Similar to the previous stage, we use
a region-based CNN for classification, see Fig. 3.

Given the proposals P2 = {(b2n, o
2
n)}

N2

n=1 from the second stage and the conv
features of the image, for each proposal box b2n, 512 × 7 × 7 feature map and
two 4096-dimension FC layers are used to extract the proposal features. Then
a {K + 1}-dimension FC layer is used to classify the b2n as one of the K object
classes or background. Finally, NMS is used to remove redundant detection boxes
and produces object detection results.

Here we also train the WSOD network given in [38] and make some im-
provements. Then the loss to train the third stage network has the form of
L3(I,y,P2;Θ3), where Θ3 represents the parameters of the network. Both of
the multiple instance detection stream and instance classifier refinement streams
in [38] produce proposal classification probabilities. Given a proposal box b2n,
suppose the proposal classification probability vector from the multiple instance
detection stream is ϕn, then similar to [5], we multiply ϕn by the objectness
score o2n during the training to exploit the prior object/background knowledge
from the objectness score. More improvements are described in the supplemen-
tary material. We use the original version network in [38] rather than the smaller
version in Section 3.2 for better detection performance.

3.4 The Overall Network Training

If we do not share the parameters of the conv layers among the different stages,
then each proposal generation stage and the WSOD stage has its own separate
network. Suppose M

pre, M1, M2, and M are the ImageNet pre-trained network,
the proposal network for the first stage, the proposal network for the second
stage, and the WSOD network for the third stage, respectively, we train the
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Algorithm 1 Proposal network training

Input: Training images with image-level annotations; an initial CNN network M
init.

Output: Proposal networks M1,M2; proposals P2.
1: Generate initial proposals P0 for each image and initialize M

1 by M
init.

2: Generate proposals P1 for each image using P0 and M
1.

3: Train the proposal network M
2 on M

init using P1.
4: Generate P2 for each image using P1 and M

2.

Algorithm 2 The alternating network training

Input: Training images with image-level annotations; Mpre.
Output: Proposal networks M1,M2; WSOD network M.
1: Train proposal networks M1,M2 on M

pre and generate proposals P2 for each image,
see Algorithm 1.

2: Train WSOD network M
′ on M

pre using P2.
3: Re-train proposal networks M

1,M2 on M
′, fix the parameters of conv layers, and

re-generate proposals P2 for each image, see Algorithm 1.
4: Re-train WSOD network M on M

′ using P2 and fix the parameters of conv layers.

proposal networks and the WSOD network step-by-step, because in our archi-
tecture each network requires outputs generated from its previous network for
training. That is, we first initialize M1 by M

pre and generate P1, then use P1 to
train M

2 and generate P2, and finally use P2 to train M.
Although we can use different networks for different stages, this would be

very time-consuming during testing, because it requires passing image through
three different networks. Therefore, w adapt the alternating network training
strategy in Faster RCNN [30] in order to share parameters of conv layers among
all stages. That is, after training the separate networks M

1, M2, and M, we
re-train proposal networks M1 and M

2 on M, fixing the parameters of the conv
layers. Then we generate proposals to train the WSOD network on M, also
fixing the parameters of the conv layers. Accordingly the conv computations of
all stages are shared. We summarize this procedure in Algorithm 2. It is obvious
that the shared method is more efficient than the unshared method because it
computes the conv features only one time rather than three times.

4 Experiments

In this section we will give experiments to analysis different components of our
method and compare our method with previous state of the arts.

4.1 Experimental Setups

Datasets and Evaluation Metrics.We choose the challenging PASCAL VOC
2007, 2012 [14], and ImageNet [32] detection datasets for evaluation. We only
use image-level annotations for training.
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Table 1. Result comparison (AP and mAP in %) for different methods on the PASCAL
VOC 2007 test set. The upper/lower part are results by single/multiple model. Our
method obtains the best mAP. See Section 4.2 for definitions of the Ours-based methods

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN-VGG16 [5] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
WSDDN+context [21] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
OICR-VGG16 [38] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

Ours-VGG16 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

WSDDN-Ens. [5] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3
OM+MIL+FRCNN [25] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
WCCN [12] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8
HCP+DSD+OSSH3 [20] 54.2 52.0 35.2 25.9 15.0 59.6 67.9 58.7 10.1 67.4 27.3 37.8 54.8 67.3 5.1 19.7 52.6 43.5 56.9 62.5 43.7
OICR-Ens.+FRCNN [38] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

Ours-Ens. 60.3 66.2 45.0 19.6 26.6 68.1 68.4 49.4 8.0 56.9 55.0 33.6 62.5 68.2 20.6 29.0 49.0 54.1 58.8 58.4 47.9
Ours-Ens.+FRCNN 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

There are 9, 962 and 22, 531 images for 20 object classes in the PASCAL
VOC 2007 and 2012 respectively. The datasets are divided into the train, val,
and test sets. Following [5, 21, 38], we train our network on the trainval set.
For evaluation, the Average Precision (AP) and mean of AP (mAP) [14] is used
to evaluate our network on the test set; the Correct Localization (CorLoc) [11]
is used to evaluate the localization accuracy on the trainval set.

There are hundreds of thousands of images for 200 object classes in the
ImageNet detection dataset which is divided into the train, val, and test sets.
Following [16], we divide the val set into val1 and val2 sets, randomly choose
no more than 1000 images per-class from the train set (train1k set), combine
the train1k and val1 sets for training, and report mAP on the val2 set.
Implementation Details. We choose the VGG16 network [36] pre-trained on
ImageNet classification dataset [32] as our initial CNN network M

pre in Sec-
tion 3.4. The two 256-dimension FC layers in Section 3.2 are initialized by sub-
sampling the parameters of the FC parameters in the original VGG16 network,
following [8]. Other new added layers are initialized by sampling from a Gaussian
distribution with mean 0 and standard deviation 0.01.

During training, we choose Stochastic Gradient Descent and set the batchsize
to 2 and 32 for PASCAL VOC and ImageNet respectively. We train each network
50K, 80K, and 20K iterations for the PSACAL VOC 2007, 2012, and ImageNet
datasets, respectively, where the learning rates are 0.001 for the first 40K, 60K,
and 15K iterations and 0.0001 for the other iterations. We set the momentum
and weight decay to 0.9 and 0.0005 respectively.

As stated in Section 3.2 and Section 3.3, we choose the best performedWSOD
network by Tang et al. [38] for region classification, while other WSOD networks
can also be chosen. We use five image scales {480, 576, 688, 864, 1024} along with
horizontal flipping for data augmentation during training and testing, and train a
Fast RCNN (FRCNN) [15] using top-scoring proposals by our method as pseudo
groundtruths following [12, 25, 38]. For the FRCNN training, we also use our
proposal network through replacing the “WSOD network” in the second line
and fourth line of Algorithm 2 by the FRCNN network. Other hyper-parameters
are as follows: the number of proposals from the first stage of the network is
set to 10K (i.e. N1 = 10K), the number of proposals from the second stage of
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Table 2. Result comparison (CorLoc in %) among different methods on the PASCAL
VOC 2007 trainval set. The upper/lower part are results by single/multiple model.
Our method obtains the best mean of CorLoc. See Section 4.2 for definitions of the
Ours-based methods

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

WSDDN-VGG16 [5] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
WSDDN+context [21] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
OICR-VGG16 [38] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
SP-VGG16 [45] 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6

Ours-VGG16 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

OM+MIL+FRCNN [25] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
WSDDN-Ens. [5] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0
WCCN [12] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7
HCP+DSD+OSSH3 [20] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1
OICR-Ens.+FRCNN [38] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

Ours-Ens. 81.2 81.2 60.7 36.7 52.3 80.7 89.0 65.1 20.5 86.3 61.6 49.5 86.4 92.4 41.4 62.6 79.4 62.4 73.0 75.6 66.9
Ours-Ens.+FRCNN 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 44.0 61.2 82.5 65.9 71.1 76.7 68.4

Table 3. Result comparison (mAP and Cor-
Loc in %) for different methods on the PAS-
CAL VOC 2012 dataset. Our method obtains
the best mAP and CorLoc

Method mAP CorLoc

WSDDN+context [21] 35.3 54.8
WCCN [12] 37.9 -
HCP+DSD+OSSH3 [20] 38.3 58.8
OICR-Ens.+FRCNN [38] 42.5 65.6

Ours-VGG16 40.8 64.9

Ours-VGG16-Ens. 43.4 67.2
Ours-VGG16-Ens.+FRCNN 45.7 69.3

Table 4. Result comparison (mAP in
%) for different methods on the Ima-
geNet detection dataset. Our method
obtains the best mAP

Method Results

Wang et al. [41] 6.0
OM+MIL+FRCNN [25] 10.8
WCCN [12] 16.3

Ours-VGG16 18.5

the network is set to 2K (i.e. N2 = 2K) which is the same scale as the Selective
Search [40], and the NMS thresholds for three stages are set to 0.9, 0.75, and 0.3,
respectively. We only report results from the method that shares conv features,
because there is no performance difference between the shared and unshared
methods.

All of our experiments are carried out on an NIVDIA GTX 1080Ti GPU,
using the Caffe [19] deep learning framework.

4.2 Experimental Results

The result comparisons among our method and other methods on the PAS-
CAL VOC datasets are shown in Table 1, Table 2, and Table 3. As we can
see, using our proposals (Ours-VGG16 in tables), we obtain much better per-
formance than other methods that use a single model [5, 21, 38], in particular
the OICR-VGG16 method [38] which is our WSOD network. Following other
methods which combine multiple models through model ensemble or training
FRCNN [5, 12, 20, 38], we also do model ensemble for our proposal results and
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Fig. 4. Recall vs. IoU for different proposal methods on the VOC 2007 test set. Our
method outperforms all methods except the RPN [30] which uses bounding box anno-
tations for training

selective search proposal results (Ours-VGG16-Ens. in tables). As the tables
show, performance is improved a lot, which show that our proposals and selec-
tive search proposals are complementary to some extent. We also train a FRCNN
network using the top-scoring proposals from Ours-VGG16-Ens. as pseudo labels
(Ours-VGG16-Ens.+FRCNN in tables). It is clear that the results are boosted
further. Importantly, our results outperform the results of the state-of-the-art
proposal-free method (i.e., localize objects without proposals) [45], which con-
firms that the proposal-based method can localize objects better in complex
images. Some qualitative results can be found in the supplementary material.

We also report the Ours-VGG16 result on the ImageNet detection dataset
in Table 4. Using a single model already outperforms all previous state-of-the-
arts [12, 25, 41]. Confidently, our result can be further improved by combining
multiple models.

4.3 Ablation Experiments

We conduct some ablation experiments on the PASCAL VOC 2007 dataset to
analyze different components of our method, including proposal recall, detection
results of different proposal methods, and the influence of the proposal refine-
ment. Also see the supplementary material for more ablation experiments.
Proposal Recall. We first compute the proposal recall at different IoU thresh-
olds with groundtruth boxes. Although the recall to IoU metric is loosely corre-
lated to detection results [7,17], it can give a reliable result to diagnose whether
proposals cover objects of desired categories well [30]. In Fig. 4, we observe that
our method obtains higher recall than the Selective Search (SS) and Edge Boxes
(EB) methods for IoU<0.9, especially when the number of proposals is small
(e.g. 300 proposals). This is because our region-based classifier refines propos-
als. It is not strange that the recall of Region Proposal Network (RPN) [30]
is higher than ours, because they train their network using the bounding box
annotations. But we do not use the bounding box information because we do
weakly supervised learning.
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Detection Results of Different Proposal Methods. Here we compare the
detection results of different proposal methods, using the same WSOD network
[38] (with the improvements in this paper). For fair comparison, we generate
about 2K proposals for each method. The results are as follows: 41.6% mAP
and 60.7% CorLoc for EB, 42.2% mAP and 60.9% CorLoc for SS, and 46.2%
mAP and 65.7% for RPN [30]. Our results (45.3% mAP and 63.8% CorLoc) are
much better than the results of EB and SS which were used by most previous
WSOD methods. The results demonstrates the effectiveness of our method for
WSOD. As before, the RPN obtains the best results because it uses the bounding
box annotations for training. These results also show that better proposals can
contribute to better WSOD performance.
The Influence of the Proposal Refinement. Finally, we study whether the
proposal refinement stage improves the WOSD performance or not. If we only
perform the coarse proposal generation stage, we obtain mAP 37.5% and CorLoc
57.3% which are much worse than the results after proposal refinement, and
even worse than the EB and SS. This is because the early conv layers also fire
on background regions, and the responses of the early conv layers are not “real”
edges, thus directly applying EB may not be optimal. The results demonstrates
that it is necessary to refine the proposals. It is also possible to perform more
proposal generation stages by using more proposal refinement stages. We plan
to explore this in the future.

5 Conclusion

In this paper, we focus on the region proposal generation step for weakly su-
pervised object detection and propose a weakly supervised region proposal net-
work which generates proposals by CNN trained under weak supervisions. Our
proposal network consists of two stages where the first stage exploits low-level
information in CNN and the second stage is a region-based CNN classifier which
distinguishes whether proposals are object or background regions. We further
adapt the alternating training strategy in Faster RCNN to share convolutional
computations among all proposal stages and the weakly supervised object detec-
tion network, which contributes to a three-stage network. Experimental results
show that our method obtains the state-of-the-art weakly supervised object de-
tection performance with performance gain of about 3% on average. In the future,
we will explore better ways to use both low-level and high-level information in
CNN for proposal generation.
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