卷积神经网络理解(一):滤波器的意义

本文介绍了卷积神经网络的发展及其在图像识别中的重要性,强调了局部连接、权值共享和子采样的概念。滤波器在CNN中用于检测图像特征,通过与图像区域点乘求和实现特征提取,类似于视觉细胞的功能。CNN通过自动学习滤波器参数,提高了图像识别的效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习、深度学习的知识!

荔枝boy

  1. 卷积神经网络的发展
  2. 卷积神经网络的重要性
  3. 卷积神经网络与图像识别
  4. 滤波器
一.卷积神经网络的发展

卷积神经网络受到视觉细胞研究的启发,1962年,Hubel和Wiesel发现初级视觉皮层中的神经元会响应视觉环境中特定的简单特征(比如有向的边等)。同时,他们注意到了两种不同类型的细胞,简单细胞和复杂细胞,简单细胞只对非常特定的空间位置,对它们非常偏好的方向有强烈的反应,复杂细胞有更大的空间不变性,复杂细胞通过几个简单细胞(每个简单细胞存在不同方向的偏好)的输入上进行池化而实现这种不变性。这两个特征即对特定特征的选择和通过前馈连接增大空间不变性构成了卷积神经网络的人工视觉基础。

计算机视觉领域中有一个比赛叫做ImageNet挑战赛,相当于计算机视觉的年度诺贝尔。2012年,Alex Krizhevsky凭借卷积神经网络获得那一年的冠军,他把图片分类误差从原来的26%降低到15%,这在计算机视觉领域引起了不小的轰动。并让卷积神经网络在如今计算机视觉领域中占据着很重要的一部分。

 

二.卷积神经网络的重要性

1.局部连接

在第三章中,我们介绍前馈神经网络的时候,相邻的两层之间,前一层的每一个神经元(或输入层的每一个单元)与后一层的每一个神经元都有

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值