基于MCP的RAG系统实战:用Cursor+GroundX构建复杂文档问答引擎

在AI与文档处理的融合趋势下,基于MCP协议的RAG(Retrieval-Augmented Generation)系统为复杂文档的智能问答提供了全新解决方案。本文将详细解析如何通过Cursor编辑器(MCP客户端)与GroundX(MCP服务器)的组合,构建一个可处理科研文献、企业知识库的端到端问答系统,并提供代码配置与实战案例。


一、技术架构与工作原理

1. 核心组件与角色
  • Cursor(MCP客户端)
    负责用户交互界面,接收自然语言查询,并通过MCP协议调用后端服务。
    • 功能
      • 显示问答界面,支持多轮对话。
      • 通过MCP协议动态选择GroundX作为文档检索工具。
  • GroundX(MCP服务器)
    基于RAG架构的文档搜索引擎,支持语义搜索与复杂文档解析。
    • 功能
      • 将文档
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值