一、文章摘要
生成隐写术(GS)是一种新的数据隐藏方式,其特点是直接从秘密数据生成隐写介质。现有的GS方法通常因性能差而受到批评。本文提出了一种新的基于流的GS方法——生成隐写流(GSF),该方法可以直接生成隐写图像而不需要封面图像。我们将隐写图像生成和秘密数据恢复过程作为一个可逆变换,在输入的秘密数据和生成的隐写图像之间建立可逆的双客观映射。在前向映射中,将秘密数据隐藏在Glow模型的输入潜变量中,生成隐写图像。通过反向映射,可以从生成的隐写图像中准确地提取隐藏数据。此外,我们提出了一种新的潜变量优化策略来提高隐写图像的保真度。实验结果表明,本文提出的GSF算法的性能远远优于SOTA算法。
二、提出的方法
拟建GSF的管道如图2所示,包括两个阶段:1.潜变量优化阶段;2.隐藏和提取秘密的阶段。在第一阶段,对潜变量Z进行优化,旨在提高生成的隐写图像的质量。如图2顶部所示,采用质量评估器对图像保真度进行评估,根据每个输入图像的保真度输出一个分数。将生成图像与真实图像之间的分数差(Diff)作为后向损失进行优化;在第二阶段,建立从输入秘密数据到输出隐写图像的可逆双射映射,通过该映射可以将秘密