无载体隐写研究综述

一、摘要


随着人们安全意识的增强,安全传输秘密信息逐渐成为公众的需求。隐写术是一种在载体中表示秘密信息的技术,目的是在不引起他人怀疑的情况下传输秘密信息。大多数传统的隐写算法通过修改载体的统计特征来隐藏秘密信息,这会在载体中留下痕迹。尽管这些修改十分微小,肉眼难以察觉,但可以通过隐写分析算法检测出来。与此不同,无载体隐写算法通过构建秘密信息与载体之间的关系来完成信息隐藏过程。由于不对载体进行修改,所有隐写分析算法都失效了。本文对无载体隐写算法进行了综述,涵盖了无载体图像和视频隐写算法的主要发展过程并总结了现有方法的主要贡献,此外,还充分讨论了图像和视频算法当前普遍存在的问题。
在这里插入图片描述

二、引言


随着多媒体技术的不断发展,信息安全已成为一个重要问题。在众多安全问题中,如何在双方之间安全地传输秘密信息已成为研究人员关注的热点。隐写术是一种在载体中隐藏秘密信息的技术,以这种方式,秘密信息的存在不会被第三方检测到。由于图像和视频具有大量的冗余信息,因此常被选作隐藏载体。2015年,南京信息工程大学的周志立教授团队提出了无载体隐写的概念,并提出了一种基于灰度图像平均像素值的算法。该算法的主要思想是在秘密信息与载体图像之间建立映射关系。给定数据库中的一张图像,首先将其分为9个块,并通过比较每个块的平均像素值生成

### 无载体以图藏图算法的实现方法 #### 藏过程的核心原理 无载体以图藏图技术的关键在于将秘密图像 \( x_{\text{sec}} \) 和容器图像 \( x_{\text{cont}} \) 的特征融合在一起,使得藏后的容器图像能够承载秘密信息的同时保持视觉上的自然性。这一过程可以被看作是一个翻译任务,即将秘密图像 \( x_{\text{sec}} \) 转换为与容器图像 \( x_{\text{cont}} \) 更加兼容的形式[^1]。 为了完成这个目标,通常会采用深度学习中的生成对抗网络 (GANs) 或扩散模型来构建藏过程。具体来说,这些模型通过训练学会如何在保留容器图像主要结构的基础上嵌入秘密图像的内容。例如,在扩散模型框架下,可以通过逐步调整像素分布的方式,使秘密图像逐渐融入到容器图像中,最终形成一个新的合成图像 \( x'_{\text{cont}} \)。 #### 揭示过程的设计思路 揭示过程则是藏过程的一个逆操作,其目的是从可能已经发生退化的容器图像 \( x'_{\text{cont}} \) 中恢复原始的秘密图像 \( x_{\text{sec}} \)。此阶段同样依赖于复杂的机器学习架构,比如卷积神经网络 (CNN),用于捕捉藏过程中引入的独特模式,并将其映射回原秘密图像的空间。 值得注意的是,由于实际应用环境中可能存在噪声或其他干扰因素影响传输质量,因此设计稳健的揭示机制显得尤为重要。这往往涉及到增强模型鲁棒性的策略研究,如加入额外的数据预处理步骤或者优化损失函数配置等措施。 #### 对比传统 LSB 方法的优势 相较于传统的 LSB(Least Significant Bit)替换方式而言,基于现代 AI 技术开发出来的新型无载体系统具备明显的技术优势。虽然 LSB 方案简单易行且计算成本较低,但它容易受到统计分析攻击的影响,安全性相对较弱;而且当面对较大尺寸或复杂纹理类型的输入数据集时表现不佳[^2]。相反地,借助高级别的特征表达能力以及强大的泛化性能,新的解决方案不仅提高了抗检测水平,还能够在更广泛的场景范围内提供可靠的服务支持。 ```python import torch from torchvision import transforms def preprocess_image(image_path): transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor() ]) image = Image.open(image_path).convert('RGB') return transform(image) # Example of using a pre-trained model for hiding process class HideModel(torch.nn.Module): def __init__(self): super(HideModel, self).__init__() # Define layers here... def forward(self, secret_img, cover_img): combined_input = torch.cat([secret_img, cover_img], dim=1) hidden_output = ... # Apply transformations based on the architecture. return hidden_output hide_model = HideModel().cuda() secret_tensor = preprocess_image("path_to_secret.png").unsqueeze(0).cuda() cover_tensor = preprocess_image("path_to_cover.jpg").unsqueeze(0).cuda() hidden_result = hide_model(secret_tensor, cover_tensor) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值