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Abstract

Many classic methods have shown non-local self-similarity in natural images
to be an effective prior for image restoration. However, it remains unclear and
challenging to make use of this intrinsic property via deep networks. In this
paper, we propose a non-local recurrent network (NLRN) as the first attempt to
incorporate non-local operations into a recurrent neural network (RNN) for image
restoration. The main contributions of this work are: (1) Unlike existing methods
that measure self-similarity in an isolated manner, the proposed non-local module
can be flexibly integrated into existing deep networks for end-to-end training to
capture deep feature correlation between each location and its neighborhood. (2)
We fully employ the RNN structure for its parameter efficiency and allow deep
feature correlation to be propagated along adjacent recurrent states. This new design
boosts robustness against inaccurate correlation estimation due to severely degraded
images. (3) We show that it is essential to maintain a confined neighborhood for
computing deep feature correlation given degraded images. This is in contrast to
existing practice [41] that deploys the whole image. Extensive experiments on both
image denoising and super-resolution tasks are conducted. Thanks to the recurrent
non-local operations and correlation propagation, the proposed NLRN achieves
superior results to state-of-the-art methods with many fewer parameters. The code
is available at https://github.com/Ding-Liu/NLRN.

1 Introduction

Image restoration is an ill-posed inverse problem that aims at estimating the underlying image from its
degraded measurements. Depending on the type of degradation, image restoration can be categorized
into different sub-problems, e.g., image denoising and image super-resolution (SR). The key to
successful restoration typically relies on the design of an effective regularizer based on image priors.
Both local and non-local image priors have been extensively exploited in the past. Considering
image denoising as an example, local image properties such as Gaussian filtering and total variation
based methods [31] are widely used in early studies. Later on, the notion of self-similarity in natural
images draws more attention and it has been exploited by non-local-based methods, e.g., non-local
means [2], collaborative filtering [8], joint sparsity [27], and low-rank modeling [15]. These non-local
methods are shown to be effective in capturing the correlation among non-local patches to improve
the restoration quality.

While non-local self-similarity has been extensively studied in the literature, approaches for capturing
this intrinsic property with deep networks are little explored. Recent convolutional neural networks
(CNNs) for image restoration [10, 20, 28, 49] achieve impressive performance over conventional
approaches but do not explicitly use self-similarity properties in images. To rectify this weakness, a
few studies [23, 30] apply block matching to patches before feeding them into CNNs. Nevertheless,
the block matching step is isolated and thus not jointly trained with image restoration networks.

In this paper, we present the first attempt to incorporate non-local operations in CNN for image
restoration, and propose a non-local recurrent network (NLRN) as an efficient yet effective network
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with non-local module. First, we design a non-local module to produce reliable feature correlation
for self-similarity measurement given severely degraded images, which can be flexibly integrated
into existing deep networks while embracing the benefit of end-to-end learning. For high parameter
efficiency without compromising restoration quality, we deploy a recurrent neural network (RNN)
framework similar to [21, 35, 36] such that operations with shared weights are applied recursively.
Second, we carefully study the behavior of non-local operation in deep feature space and find that
limiting the neighborhood of correlation computation improves its robustness to degraded images. The
confined neighborhood helps concentrate the computation on relevant features in the spatial vicinity
and disregard noisy features, which is in line with conventional image restoration approaches [8, 15].
In addition, we allow message passing of non-local operations between adjacent recurrent states of
RNN. Such inter-state flow of feature correlation facilitates more robust correlation estimation. By
combining the non-local operation with typical convolutions, our NLRN can effectively capture and
employ both local and non-local image properties for image restoration.

It is noteworthy that recent work has adopted similar ideas on video classification [41]. However,
our method significantly differs from it in the following aspects. For each location, we measure the
feature correlation of each location only in its neighborhood, rather than throughout the whole image
as in [41]. In our experiments, we show that deep features useful for computing non-local priors
are more likely to reside in neighboring regions. A larger neighborhood (the whole image as one
extreme) can lead to inaccurate correlation estimation over degraded measurements. In addition, our
method fully exploits the advantage of RNN architecture - the correlation information is propagated
among adjacent recurrent states to increase the robustness of correlation estimation to degradations of
various degrees. Moreover, our non-local module is flexible to handle inputs of various sizes, while
the module in [41] handles inputs of fixed sizes only.

We introduce NLRN by first relating our proposed model to other classic and existing non-local
image restoration approaches in a unified framework. We thoroughly analyze the non-local module
and recurrent architecture in our NLRN via extensive ablation studies. We provide a comprehensive
comparison with recent competitors, in which our NLRN achieves state-of-the-art performance
in image denoising and SR over several benchmark datasets, demonstrating the superiority of the
non-local operation with recurrent architecture for image restoration.

2 Related Work
Image self-similarity as an important image characteristic has been used in a number of non-local-
based image restoration approaches. The early works include bilateral filtering [38] and non-local
means [2] for image denoising. Recent approaches exploit image self-similarity by imposing spar-
sity [27, 44]. Alternatively, similar image patches are modeled with low-rankness [15], or by
collaborative Wiener filtering [8, 47]. Neighborhood embedding is a common approach for image
SR [5, 37], in which each image patch is approximated by multiple similar patches in a manifold.
Self-example based image SR approaches [14, 12] exploit the local self-similarity assumption, and
extract LR-HR exemplar pairs merely from the low-resolution image across different scales to predict
the high-resolution image. Similar ideas are adopted for image deblurring [9].

Deep neural networks have been prevalent for image restoration. The pioneering works include a
multilayer perceptron for image denoising [3] and a three-layer CNN for image SR [10]. Deconvolu-
tion is adopted to save computation cost and accelerate inference speed [34, 11]. Very deep CNNs are
designed to boost SR accuracy in [20, 22, 24]. Dense connections among various residual blocks are
included in [39]. Similarly CNN based methods are developed for image denoising in [28, 49, 50, 26].
Block matching as a preprocessing step is cascaded with CNNs for image denoising [23, 30]. Be-
sides CNNs, RNNs have also been applied for image restoration while enjoying the high parameter
efficiency [21, 35, 36].

In addition to image restoration, feature correlations are widely exploited along with neural networks
in many other areas, including graphical models [51, 4, 17], relational reasoning [32], machine
translation [13, 40] and so on. We do not elaborate on them here due to the limitation of space.

3 Non-Local Operations for Image Restoration

In this section, we first present a unified framework of non-local operations used for image restoration
methods, e.g., collaborative filtering [8], non-local means [2], and low-rank modeling [15], and we
discuss the relations between them. We then present the proposed non-local operation module.
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3.1 A General Framework

In general, a non-local operation takes a multi-channel input X ∈ RN×m as the image feature, and
generates output feature Z ∈ RN×k. Here N and m denote the number of image pixels and data
channels, respectively. We propose a general framework with the following formulation:

Z = diag{δ(X)}−1 Φ(X)G(X) . (1)

Here, Φ(X) ∈ RN×N is the non-local correlation matrix, and G(X) ∈ RN×k is the multi-channel
non-local transform. Each row vector Xi denotes the local features in location i. Φ(X)ji represents
the relationship between the Xi and Xj , and each row vector G(X)j is the embedding of Xj .1 The
diagonal matrix diag{δ(X)} ∈ RN×N normalizes the output at each i-th pixel with normalization
factor δi(X).

3.2 Classic Methods

The proposed framework works with various classic non-local methods for image restoration, includ-
ing methods based on low-rankness [15], collaborative filtering [8], joint sparsity [27], as well as
non-local mean filtering [2].

Block matching (BM) is a commonly used approach for exploiting non-local image structures
in conventional methods [15, 8, 27]. A q × q spatial neighborhood is set to be centered at each
location i, and Xi reduces to the image patch centered at i. BM selects the Ki most similar patches
(Ki � q2) from this neighborhood, which are used jointly to restore Xi. Under the proposed
non-local framework, these methods can be represented as

Zi =
1

δi(X)

∑
j∈Ci

Φ(X)ji G(X)j , ∀i . (2)

Here δi(X) =
∑
j∈Ci

Φ(X)ji and Ci denotes the set of indices of theKi selected patches. Thus, each
row Φ(X)i has only Ki non-zero entries. The embedding G(X) and the non-zero elements vary for
non-local methods based on different models. For example, in WNNM [15],

∑
j∈Ci

Φ(X)ji G(X)j
corresponds to the projection of Xi onto the group-specific subspace as a function of the selected
patches. Specifically, the subspace for calculating Zi is spanned by the eigenvectors U i of XT

Ci
XCi .

Thus Zi = XCi
U idiag{σ}UT

i , where diag{σ} is obtained by applying the shrinkage function
associated with the weighted nuclear norm [15] to the eigenvalues of XT

Ci
XCi

. We show the
generalization about more classic non-local image restoration methods in the supplementary material.

Except for the hard block matching, other methods, e.g., the non-local means algorithm [2], apply
soft block matching by calculating the correlation between the reference patch and each patch in
the neighborhood. Each element Φ(X)ji is determined only by each {Xi,Xj} pair, so Φ(X)ji =
φ(Xi,Xj), where φ( · ) is determined by the distance metric. In [2], weighted Euclidean distance
with Gaussian kernel is applied as the metric, such that φ(Xi,Xj) = exp{−‖Xi −Xj‖22,a /h

2}.
Besides, identity mapping is directly used as the embedding in [2], i.e., G(X)j = Xj . In this case,
the non-local framework in (1) reduces to

Zi =
1

δi(X)

∑
j∈Si

exp{−
‖Xi −Xj‖22,a

h2
}Xj , ∀i, (3)

where δi(X) =
∑
j∈Si exp{−‖Xi −Xj‖22,a /h

2} and Si is the set of indices in the neighborhood
of Xi. Note that both a and h are constants, denoting the standard deviation of Gaussian kernel, and
the degree of filtering, respectively [2]. It is noteworthy that the cardinality of Si for soft BM is much
larger than that of Ci for hard BM, which gives more flexibility of using feature correlations between
neighboring locations.

The conventional non-local methods suffer from the drawback that parameters are either fixed [2], or
obtained by suboptimal approaches [8, 27, 15], e.g., the parameters of WNNM are learned based on
the low-rankness assumption, which is suboptimal as the ultimate objective is to minimize the image
reconstruction error.

1In our analysis, if A is a matrix, Ai, Aj , and Aj
i denote its i-th row, j-th column, and the element at the

i-th row and j-th column, respectively.
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Figure 1: An illustration of our non-local module working on a single location. The white tensor denotes
the deep feature representation of an entire image. The red fiber is the features of this location and the blue
tensor denotes the features in its neighborhood. θ, ψ and g are implemented by 1× 1 convolution followed by
reshaping operations.

3.3 The Proposed Non-Local Module

Based on the general non-local framework in (1), we propose another soft block matching approach
and apply the Euclidean distance with linearly embedded Gaussian kernel [41] as the distance metric.
The linear embeddings are defined as follows:

Φ(X)ji = φ(Xi,Xj) = exp{θ(Xi)ψ(Xj)
T } , ∀i, j , (4)

θ(Xi) = XiW θ, ψ(Xi) = XiW ψ, G(X)i = XiW g , ∀i . (5)

The embedding transforms W θ, W φ, and W g are all learnable and have the shape of m× l, m×
l, m×m, respectively. Thus, the proposed non-local operation can be written as

Zi =
1

δi(X)

∑
j∈Si

exp {XiW θW
T
ψX

T
j }XiW g , ∀i , (6)

where δi(X) =
∑
j∈Si φ(Xi,Xj). Similar to [2], to obtain Zi, we evaluate the correlation between

Xi and each Xj in the neighborhood Si. More choices of φ(Xi,Xj) are discussed in Section 5.

The proposed non-local operation can be implemented by common differentiable operations, and thus
can be jointly learned when incorporated into a neural network. We wrap it as a non-local module
by adding a skip connection, as shown in Figure 1, since the skip connection enables us to insert a
non-local module into any pre-trained model, while maintaining its initial behavior by initializing
W g as zero. Such a module introduces only a limited number of parameters since θ, ψ and g are
1× 1 convolutions and m = 128, l = 64 in practice. The output of this module on each location only
depends on its q × q neighborhood, so this operation can work on inputs of various sizes.

Relation to Other Methods: Recent works have combined non-local BM and neural networks
for image restoration [30, 23, 41]. Lefkimmiatis [23] proposed to first apply BM to noisy image
patches. The hard BM results are used to group patch features, and a CNN conducts a trainable
collaborative filtering over the matched patches. Qiao et al. [30] combined similar non-local BM
with TNRD networks [7] for image denoising. However, as conventional methods [8, 27, 15], these
works [23, 30] conduct hard BM directly over degraded input patches, which may be inaccurate over
severely degraded images. In contrast, our proposed non-local operation as soft BM is applied on
learned deep feature representations that are more robust to degradation. Furthermore, the matching
results in [23] are isolated from the neural network, similar to the conventional approaches, whereas
the proposed non-local module is trained jointly with the entire network in an end-to-end manner.

Wang et al. [41] used similar approaches to add non-local operations into neural networks for high-
level vision tasks. However, unlike our approach, Wang et al. [41] calculated feature correlations
throughout the whole image. which is equivalent to enlarging the neighborhood to the entire image in
our approach. We empirically show that increasing the neighborhood size does not always improve
image restoration performance, due to the inaccuracy of correlation estimation over degraded input
images. Hence it is imperative to choose a neighborhood of a proper size to achieve best performance
for image restoration. In addition, the non-local operation in [41] can only handle input images of
fixed size, while our module in (6) is flexible to various image sizes. Finally, our non-local module,
when incorporated into an RNN framework, allows the flow of correlation information between
adjacent states to enhance robustness against inaccurate correlation estimation. This is a new unique
formulation to deal with degraded images. More details are provided next.
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Figure 2: An illustration of the transition function
frecurrent in the proposed NLRN.
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Figure 3: The operations for a single location i in the
non-local module used in NLRN.

4 Non-Local Recurrent Network
In this section, we describe the RNN architecture that incorporates the non-local module to form
our NLRN. We adopt the common formulation of an RNN, which consists of a set of states, namely,
input state, output state and recurrent state, as well as transition functions among the states. The
input, output, and recurrent states are represented as x, y and s respectively. At each time step t,
an RNN receives an input xt, and the recurrent state and the output state of the RNN are updated
recursively as follows:

st = finput(x
t) + frecurrent(s

t−1), yt = foutput(s
t), (7)

where finput, foutput, and frecurrent are reused at every time step. In our NLRN, we set the following:
• s0 is a function of the input image I .
• xt = 0, ∀t ∈ {1, . . . , T}, and finput(0) = 0.
• The output state yt is calculated only at the time T as the final output.

We add an identity path from the very first state which helps gradient backpropagation during
training [35], and a residual path of the deep feature correlation between each location and its
neighborhood from the previous state. Hence, st = {stfeat, s

t
corr}, and st = frecurrent(s

t−1, s0), ∀t ∈
{1, . . . , T}, where stfeat denotes the feature map in time t and stcorr is the collection of deep feature
correlation. For the transition function frecurrent, a non-local module is first adopted and is followed
by two convolutional layers, before the feature s0 is added from the identity path. The weights in the
non-local module are shared across recurrent states just as convolutional layers, so our NLRN still
keeps high parameter efficiency as a whole. An illustration is displayed in Figure 2.

It is noteworthy that inside the non-local module, the feature correlation for location i from the
previous state, st−1corr,i, is added to the estimated feature correlation in the current state before the
softmax normalization, which enables the propagation of correlation information between adjacent
states for more robust correlation estimation. The details can be found in Figure 3. The initial
state s0 is set as the feature after a convolutional layer on the input image. foutput is represented
by another single convolutional layer. All layers have 128 filters with 3× 3 kernel size except for
the non-local module. Batch normalization and ReLU activation function are performed ahead of
each convolutional layer following [18]. We adopt residual learning and the output of NLRN is the
residual image Î = foutput(s

T ) when NLRN is unfolded T times. During training, the objective is to
minimize the mean square error L(Î , Ĩ) = 1

2 ||Î + I − Ĩ||2, where Ĩ denotes the ground truth image.

Relation to Other RNN Methods: Although RNNs have been adopted for image restoration before,
our NLRN is the first to incorporate non-local operations into an RNN framework with correlation
propagation. DRCN [21] recursively applies a single convolutional layer to the input feature map
multiple times without the identity path from the first state. DRRN [35] applies both the identity path
and the residual path in each state, but without non-local operations, and thus there is no correlation
information flow across adjacent states. MemNet [36] builds dense connections among several types
of memory blocks, and weights are shared in the same type of memory blocks but are different across
various types. Compared with MemNet, our NLRN has an efficient yet effective RNN structure with
shallower effective depth and fewer parameters, but obtains better restoration performance, which is
shown in Section 5 in detail.

5 Experiments
Dataset: For image denoising, we adopt two different settings to fairly and comprehensively compare
with recent deep learning based methods [28, 23, 49, 36]: (1) As in [7, 49, 23], we choose as the
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training set the combination of 200 images from the train set and 200 images from the test set in the
Berkeley Segmentation Dataset (BSD) [29], and test on two popular benchmarks: Set12 and Set68
with σ = 15, 25, 50 following [49]. (2) As in [28, 36], we use as the training set the combination of
200 images from the train set and 100 images from the val set in BSD, and test on Set14 and the
BSD test set of 200 images with σ = 30, 50, 70 following [28, 36]. In addition, we evaluate our
NLRN on the Urban100 dataset [19], which contains abundant structural patterns and textures, to
further demonstrate the capability of using image self-similarity of our NLRN. The training set and
test set are strictly disjoint and all the images are converted to gray-scale in each experiment setup.
For image SR, we follow [20, 35, 36] and use a training set of 291 images where 91 images are
proposed in [46] and other 200 are from the BSD train set. We adopt four benchmark sets: Set5 [1],
Set14 [48], BSD100 [29] and Urban100 [19] for testing with three upscaling factors: ×2, ×3 and
×4. The low-resolution images are synthesized by bicubic downsampling.

Training Settings: We randomly sample patches whose size equals the neighborhood of non-local
operation from images during training. We use flipping, rotation and scaling for augmenting training
data. For image denoising, we add independent and identically distributed Gaussian noise with zero
mean to the original image as the noisy input during training. We train a different model for each
noise level. For image SR, only the luminance channel of images is super-resolved, and the other two
color channels are upscaled by bicubic interpolation, following [20, 21, 35]. Moreover, the training
images for all three upscaling factors: ×2, ×3 and ×4 are upscaled by bicubic interpolation into the
desired spatial size and are combined into one training set. We use this set to train one single model
for all these three upscaling factors as in [20, 35, 36].

We use Adam optimizer to minimize the loss function. We set the initial learning rate as 1e-3 and
reduce it by half five times during training. We use Xavier initialization for the weights. We clip
the gradient at the norm of 0.5 to prevent the gradient explosion which is shown to empirically
accelerate training convergence, and we adopt 16 as the minibatch size during training. Training a
model takes about 3 days with a Titan Xp GPU. For non-local module, we use circular padding for
the neighborhood outside input patches. For convolution, we pad the boundaries of feature maps with
zeros to preserve the spatial size of feature maps.

5.1 Model Analysis

In this section, we analyze our model in the following aspects. First, we conduct the ablation study of
using different distance metrics in the non-local module. Table 1 compares instantiations including
Euclidean distance, dot product, embedded dot product, Gaussian, symmetric embedded Gaussian
and embedded Gaussian when used in NLRN of 12 unfolded steps. Embedded Gaussian achieves the
best performance and is adopted in the following experiments.

We compare the NLRN with its variants in terms of PSNR in Table 2. We have a few observations.
First, the same model with untied weights performs worse than its weight-sharing counter-part. We
speculate that the model with untied weights is prone to model over-fitting and suffers much slower
training convergence, both of which undermine its performance. To investigate the function of non-
local modules, we implement a baseline RNN with the same parameter number of NLRN, and find it
is worse than NLRN by about 0.2 dB, showing the advantage of using non-local image properties for
image restoration. Besides, we implement NLRNs where non-local module is used in every other
state or every three states, and observe that if the frequency of using non-local modules in NLRN
is reduced, the performance decreases accordingly. We show the benefit of propagating correlation
information among adjacent states by comparing with the counter-part in terms of restoration accuracy.
To further analyze the non-local module, we visualize the feature correlation maps for non-local
operations in Figure 4. It can be seen that as the number of recurrent states increases, the locations

Table 1: Image denoising comparison of our proposed model
with various distance metrics on Set12 with noise level of 25.

Distance metric φ(Xi,Xj) PSNR
Euclidean distance exp{−‖Xi −Xj‖22 /h

2} 30.74
Dot product XiX

T
j 30.68

Embedded dot product θ(Xi)ψ(Xj)
T 30.75

Gaussian exp{XiX
T
j } 30.69

Symmetric embedded Gaussian exp{θ(Xi)θ(Xj)
T } 30.76

Embedded Gaussian exp{θ(Xi)ψ(Xj)
T } 30.80

Table 2: Image denoising comparison of our
NLRN with its variants on Set12 with noise
level of 25.

Model PSNR
NLRN w/o parameter sharing 30.65
RNN with same parameter no. 30.61

Non-local module in every other state 30.76
Non-local module in every 3 states 30.72

NLRN w/o propagating correlations 30.78
NLRN 30.80
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Figure 4: Examples of correlation maps of non-local operations for
image denoising. Noisy patch/ground truth patch: the neighborhood of
the red center pixel used in non-local operations. (1)-(6): the correlation
map for recurrent state 1-6 from NLRN with unrolling length of 6.
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Figure 5: Neighborhood size vs.
image denoising performance of
our proposed model on Set12 with
noise level of 25.
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Figure 6: Unrolling length vs.
image denoising performance of
our proposed model on Set12 with
noise level of 25.

DnCNN RED MemNet NLRN
Max effective depth 17 30 80 38
Parameter sharing No No Yes Yes

Parameter no. 554k 4,131k 667k 330k
Multi-view testing No Yes No No No Yes
Training images 400 300 300 400 300 300

PSNR 27.18 27.33 27.38 27.64 27.60 27.66

Table 3: Image denoising comparison of our proposed model with state-
of-the-art network models on Set12 with noise level of 50. Model com-
plexities are also compared.

with similar features progressively show higher correlations in the map, which demonstrates the
effectiveness of the non-local module for exploiting image self-similarity.

Figure 5 investigates the influence of the neighborhood size in the non-local module on image
denoising results. The performance peaks at q = 45. This shows that limiting the neighborhood
helps concentrate the correlation calculation on relevant features in the spatial vicinity and enhance
correlation estimation. Therefore, it is necessary to choose a proper neighborhood size (rather than
the whole image) for image restoration. We select q = 45 for the rest of this paper unless stated
otherwise.

The unrolling length T determines the maximum effective depth (i.e., maximum number of convolu-
tional layers) of NLRN. The influence of the unrolling length on image denoising results is shown in
Figure 6. The performance increases as the unrolling length rises, but gets saturated after T = 12.
Given the tradeoff between restoration accuracy and inference time, we adopt T = 12 for NLRN in
all the experiments.

5.2 Comparisons with State-of-the-Art Methods
We compare our proposed model with a number of recent competitors for image denoising and
image SR, respectively. PSNR and SSIM [42] are adopted for measuring quantitative restoration
performance.

Image Denoising: For a fair comparison with other methods based on deep networks, we train our
model under two settings: (1) We use the training data as in TNRD [7], DnCNN [49] and NLNet [23],
and the result is shown in Table 4. We cite the result of NLNet in the original paper [23], since no
public code or model is available. (2) We use the training data as in RED [28] and MemNet [36], and
the result is shown in Table 5. We note that RED uses multi-view testing [43] to boost the restoration
accuracy, i.e., RED processes each test image as well as its rotated and flipped versions, and all
the outputs are then averaged to form the final denoised image. Accordingly, we perform the same
procedure for NLRN and find its performance, termed as NLRN-MV, is consistently improved. In
addition, we include recent non-deep-learning based methods: BM3D [8] and WNNM [15] in our
comparison. We do not list other methods [52, 3, 45, 6, 50] whose average performances are worse
than DnCNN or MemNet. Our NLRN significantly outperforms all the competitors on Urban100 and
yields the best results across almost all the noise levels and datasets.

To further show the advantage of the network design of NLRN, we compare different versions of
NLRN with several state-of-the-art network models, i.e., DnCNN, RED and MemNet in Table 3.
NLRN uses the fewest parameters but outperforms all the competitors. Specifically, NLRN benefits
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Table 4: Benchmark image denoising results. Training and testing protocols are followed as in [49]. Average
PSNR/SSIM for various noise levels on Set12, BSD68 and Urban100. The best performance is in bold.

Dataset Noise BM3D WNNM TNRD NLNet DnCNN NLRN

Set12
15 32.37/0.8952 32.70/0.8982 32.50/0.8958 -/- 32.86/0.9031 33.16/0.9070
25 29.97/0.8504 30.28/0.8557 30.06/0.8512 -/- 30.44/0.8622 30.80/0.8689
50 26.72/0.7676 27.05/0.7775 26.81/0.7680 -/- 27.18/0.7829 27.64/0.7980

BSD68
15 31.07/0.8717 31.37/0.8766 31.42/0.8769 31.52/- 31.73/0.8907 31.88/0.8932
25 28.57/0.8013 28.83/0.8087 28.92/0.8093 29.03/- 29.23/0.8278 29.41/0.8331
50 25.62/0.6864 25.87/0.6982 25.97/0.6994 26.07/- 26.23/0.7189 26.47/0.7298

Urban100
15 32.35/0.9220 32.97/0.9271 31.86/0.9031 -/- 32.68/0.9255 33.45/0.9354
25 29.70/0.8777 30.39/0.8885 29.25/0.8473 -/- 29.97/0.8797 30.94/0.9018
50 25.95/0.7791 26.83/0.8047 25.88/0.7563 -/- 26.28/0.7874 27.49/0.8279

Table 5: Benchmark image denoising results. Training and testing protocols are followed as in [36]. Average
PSNR/SSIM for various noise levels on 14 images, BSD200 and Urban100. Red is the best and blue is the
second best performance.

Dataset Noise BM3D WNNM RED MemNet NLRN NLRN-MV

14 images
30 28.49/0.8204 28.74/0.8273 29.17/0.8423 29.22/0.8444 29.37/0.8460 29.41/0.8472
50 26.08/0.7427 26.32/0.7517 26.81/0.7733 26.91/0.7775 27.00/0.7777 27.05/0.7791
70 24.65/0.6882 24.80/0.6975 25.31/0.7206 25.43/0.7260 25.49/0.7255 25.54/0.7273

BSD200
30 27.31/0.7755 27.48/0.7807 27.95/0.8056 28.04/0.8053 28.15/0.8423 28.20/0.8436
50 25.06/0.6831 25.26/0.6928 25.75/0.7167 25.86/0.7202 25.93/0.7214 25.97/0.8429
70 23.82/0.6240 23.95/0.6346 24.37/0.6551 24.53/0.6608 24.58/0.6614 24.62/0.6634

Urban100
30 28.75/0.8567 29.47/0.8697 29.12/0.8674 29.10/0.8631 29.94/0.8830 29.99/0.8842
50 25.95/0.7791 26.83/0.8047 26.44/0.7977 26.65/0.8030 27.38/0.8241 27.43/0.8256
70 24.27/0.7163 25.11/0.7501 24.75/0.7415 25.01/0.7496 25.66/0.7707 25.71/0.7724

Table 6: Benchmark SISR results. Average PSNR/SSIM for scale factor ×2, ×3 and ×4 on datasets Set5, Set14,
BSD100 and Urban100. The best performance is in bold.

Dataset Scale SRCNN VDSR DRCN LapSRN DRRN MemNet NLRN

Set5
×2 36.66/0.9542 37.53/0.9587 37.63/0.9588 37.52/0.959 37.74/0.9591 37.78/0.9597 38.00/0.9603
×3 32.75/0.9090 33.66/0.9213 33.82/0.9226 33.82/0.923 34.03/0.9244 34.09/0.9248 34.27/0.9266
×4 30.48/0.8628 31.35/0.8838 31.53/0.8854 31.54/0.885 31.68/0.8888 31.74/0.8893 31.92/0.8916

Set14
×2 32.45/0.9067 33.03/0.9124 33.04/0.9118 33.08/0.913 33.23/0.9136 33.28/0.9142 33.46/0.9159
×3 29.30/0.8215 29.77/0.8314 29.76/0.8311 29.79/0.832 29.96/0.8349 30.00/0.8350 30.16/0.8374
×4 27.50/0.7513 28.01/0.7674 28.02/0.7670 28.19/0.772 28.21/0.7721 28.26/0.7723 28.36/0.7745

BSD100
×2 31.36/0.8879 31.90/0.8960 31.85/0.8942 31.80/0.895 32.05/0.8973 32.08/0.8978 32.19/0.8992
×3 28.41/0.7863 28.82/0.7976 28.80/0.7963 28.82/0.797 28.95/0.8004 28.96/0.8001 29.06/0.8026
×4 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.32/0.728 27.38/0.7284 27.40/0.7281 27.48/0.7306

Urban100
×2 29.50/0.8946 30.76/0.9140 30.75/0.9133 30.41/0.910 31.23/0.9188 31.31/0.9195 31.81/0.9249
×3 26.24/0.7989 27.14/0.8279 27.15/0.8276 27.07/0.827 27.53/0.8378 27.56/0.8376 27.93/0.8453
×4 24.52/0.7221 25.18/0.7524 25.14/0.7510 25.21/0.756 25.44/0.7638 25.50/0.7630 25.79/0.7729

from inherent parameter sharing and uses only less than 1/10 parameters of RED. Compared with the
RNN competitor, MemNet, NLRN uses only half of parameters and much shallower depth to obtain
better performance, which shows the superiority of our non-local recurrent architecture.

Image Super-Resolution: We compare our model with several recent SISR approaches, including
SRCNN [10], VDSR [20], DRCN [21], LapSRN [22], DRRN [35] and MemNet [36] in Table 6. We
crop pixels near image borders before calculating PSNR and SSIM as in [10, 33, 20, 21]. We do
not list other methods [19, 33, 25, 34, 16] since their performances are worse than that of DRRN or
MemNet. Besides, we do not include SRDenseNet [39] and EDSR [24] in the comparison because
the number of parameters in these two network models is over two orders of magnitude larger than
that of our NLRN and their training datasets are significantly larger than ours. It can be seen that
NLRN yields the best result across all the upscaling factors and datasets. Visual results are provided
in the supplementary material.

6 Conclusion
We have presented a new and effective recurrent network that incorporates non-local operations for
image restoration. The proposed non-local module can be trained end-to-end with the recurrent
network. We have studied the importance of computing reliable feature correlations within a confined
neighorhood against the whole image, and have shown the benefits of passing feature correlation
messages between adjacent recurrent stages. Comprehensive evaluations over benchmarks for image
denoising and super-resolution demonstrate the superiority of NLRN over existing methods.
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