鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进:利用ADNet图像去噪
简介
YOLOv8是目前最先进的目标检测算法之一,但其性能会受到图像噪声的影响。本文介绍一种利用基于注意力机制的图像去噪网络ADNet融合YOLOv8的方案,以提升目标检测的准确性。
原理详解
ADNet图像去噪
ADNet(Attention-based Denoising Network)是一种基于注意力机制的图像去噪网络,它可以有效地去除图像中的噪声,同时保留图像的细节和纹理。
融合YOLOv8图像去噪
将ADNet与YOLOv8结合,可以先利用ADNet对输入图像进行去噪,然后再使用去噪后的图像进行目标检测,从而提高检测精度。
应用场景
该改进方案适用于各种存在噪声的目标检测任务,例如:
- 低光照条件下的目标检测: 在低光照条件下,图像噪声较多,会影响目标检测的性能。
- 模糊图像的目标检测: 在模糊图像中,目标特征不明显,去噪可以提升目标的清晰度,进而提高检测精度。
- 压缩图像的目标检测: 在压缩过程中,图像会产生噪声,去噪可以恢复图像的细节,提高检测精