YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)

鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)

介绍

本篇介绍了YOLOv8模型及其改进,特别关注损失函数。我们将介绍SlideLoss和FocalLoss,这两种分类损失函数可以帮助提高YOLOv8模型的精度,尤其是对于小物体和低置信度物体。我们将解释这些损失函数背后的原理,讨论它们的应用场景,提供代码实现,并探讨它们的影响和未来方向。

原理详解

SlideLoss

​编辑Opens in a new window​编辑www.mdpi.com

graph illustrating the SlideLoss function

SlideLoss是一种分类损失函数,旨在解决目标检测模型中对小物体误分类的问题。它在交叉熵损失和分类裕度损失之间引入平滑过渡,有效地处理了小物

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值