鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
介绍
本篇介绍了YOLOv8模型及其改进,特别关注损失函数。我们将介绍SlideLoss和FocalLoss,这两种分类损失函数可以帮助提高YOLOv8模型的精度,尤其是对于小物体和低置信度物体。我们将解释这些损失函数背后的原理,讨论它们的应用场景,提供代码实现,并探讨它们的影响和未来方向。
原理详解
SlideLoss
编辑Opens in a new window编辑www.mdpi.com
graph illustrating the SlideLoss function
SlideLoss是一种分类损失函数,旨在解决目标检测模型中对小物体误分类的问题。它在交叉熵损失和分类裕度损失之间引入平滑过渡,有效地处理了小物