YOLOv8 改进:添加 ECA 注意力机制
引言
YOLO(You Only Look Once)系列网络以其高效实时性能在目标检测领域占据主导地位。为了进一步提高检测的精准度和鲁棒性,可以引入 ECA(Efficient Channel Attention)注意力机制,以增强对重要特征的捕捉能力。
技术背景
ECA 是一种轻量级且高效的通道注意力机制,通过逐通道地计算卷积核来避免显式地建立全连接操作。它无需增加过多的参数,却能有效提升模型的表现能力,特别是在减少复杂性与提升精度之间找到最佳平衡。
应用使用场景
- 交通监控:在城市道路环境中实现快速准确的车辆和行人检测。
- 无人机影像分析:在高空视频中识别并跟踪动态物体。
- 智能安防系统:在人群密集区域识别潜在威胁。
- 工业自动化:在流水线上检测产品缺陷。
原理解释
ECA 通过局部跨通道交互而不是全局池化,避免了繁重的矩阵乘法,旨在保持通道间的信息流动性。具体而言,它通过 1D 卷积来聚合通道信息,从而增强特征图的表达能力。
核心特性
- 轻量化设计:不显著增加模型参数。<