数据集自动划分及格式转换

该博客介绍了如何在人工智能目标检测任务中管理数据集,包括将XML格式的标注文件转换为JSON格式,以及如何按比例划分训练集和验证集。通过Python脚本,实现了XML文件的拆分、图片及标注文档的移动以及XML到JSON的转换,以适应模型训练和评估的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景说明:

在人工智能领域目标检测的时候,我们会搜集大量的样本图片并进行图片标注,然后做成自己想要的数据集。通常做成的数据集,一个文件夹下面存放我们搜集的图片,另一个存放标注文档,受限于标注软件的使用,大部分标注软件标注后生成的标注档是xml格式,有时候根据模型需要,我们需要将整天样本数据划分为数据集和测试集,同事需要将xml格式的标注文档转换为json文档,本文主要实现以上的数据集划分和数据集格式转换功能。

数据集准备:

在自己建立的数据集文件夹下,应该有两个这样的文档,其中Annotations存放的是每一副图片的标注文档,xml格式的;JPEGImages存放搜集的样本图片。

数据集序列划分:

# -*- coding:utf-8 -*-
# 功能:将xml文件分成训练集和测试集
'''
import os, random, shutil
# 训练集和数据集的比例
train_percent = 0.8
# 要转换的xml文件相对路劲位置
xmlfilepath = './Annotations'
# 换分训练集和测试集后的路劲存储位置
txtsavepath = './Main'
# 判断划分后的训练和数据集保存路径是否存在,不存在则声称文件夹
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)
# 统计xml个数并转换成列表
total_xml = os.listdir(xmlfilepath)
#print(total_xml)
num=len(total_xml)
list=range(num)
#print(list)
# 计算训练集个数
tv=int(num*train_percent)
# 随机取样
train=random.sample(list,tv)
#print(train)
# 建立或打开要写入的训练或验证集文档
ftrain = open('./Main/train1.txt', 'w')
fval = open('./Main/val1.txt', 'w')
# 写入数据
for i in list:
    name=total_xml[i][:-4]+'\n'
    if i in train:
        ftrain.write(name)
    else:
        fval.write(name)
# 关闭文件        
ftrain.close()
fval.close()
# 上面的执行完成,会在Main文件夹下生成相应的训练和验证集txt档

执行完毕后会在当前目录下Main文件夹中生成train1.txt和val1.txt两个文件。

 数据集图片划分:

根据txt文件中的随机生成的序列,划分对应的图片和xml文档。

import os
import shutil

if __name__ == '__main__':
    fileDir = "./JPEGImages/"  # 源图片文件夹路径
    trainDir = './trainDir/train2017/'  # 移动到新的文件夹路径
    valDir = './valDir/val2017/'

    if not os.path.exists(trainDir):
        os.makedirs(trainDir)
    if not os.path.exists(valDir):
        os.makedirs(valDir)

    train = []
    with open('./Main/train1.txt', 'r') as f:
        for line in f:
            train.append(line.strip('\n'))        
    for name in train:
        shutil.copy2(fileDir + name + '.jpg', trainDir + name + '.jpg')
        
    val = []
    with open('./Main/val1.txt', 'r') as f:
        for line in f:
            val.append(line.strip('\n'))

    for name in val:
        shutil.copy2(fileDir + name + '.jpg', valDir + name + '.jpg')

    fileDir = "./Annotations/"  # 源图片文件夹路径
    trainDir_xml = './xml/xml_train/'  # 移动到新的文件夹路径
    valDir_xml = './xml/xml_val/'

    if not os.path.exists(trainDir_xml):
        os.makedirs(trainDir_xml)

    if not os.path.exists(valDir_xml):
        os.makedirs(valDir_xml)

    train = []
    with open('./Main/train1.txt', 'r') as f:
        for line in f:
            train.append(line.strip('\n'))
    # print(train)
    for name in train:
        shutil.copy2(fileDir + name + '.xml', trainDir_xml + name + '.xml')

    val = []
    with open('./Main/val1.txt', 'r') as f:
        for line in f:
            val.append(line.strip('\n'))
        # print(train)
    for name in val:
        shutil.copy2(fileDir + name + '.xml', valDir_xml + name + '.xml')

print('新的数据集划分完毕!')

代码运行后,会在当前目录下生成trainDir,valDir,xml文件夹,其中trainDir存放训练集图片,valDir存放验证集图片,xml文件夹存放对应的标注档案。

数据格式转换:

# -*- coding:utf-8 -*-
# 功能:将划分好的训练集和测试集xml文件生成对应的json格式文件

import sys
import os
import json
import xml.etree.ElementTree as ET
import glob
import shutil

START_BOUNDING_BOX_ID = 1
PRE_DEFINE_CATEGORIES = {'Collision':1, 'Dirty':2, 'Scratch':3}

def get(root, name):
    vars = root.findall(name)
    return vars

def get_and_check(root, name, length):
    vars = root.findall(name)
    if len(vars) == 0:
        raise ValueError("Can not find %s in %s." % (name, root.tag))
    if length > 0 and len(vars) != length:
        raise ValueError(
            "The size of %s is supposed to be %d, but is %d."
            % (name, length, len(vars))
        )
    if length == 1:
        vars = vars[0]
    return vars

def get_filename_as_integer(filename):
    filename = filename.replace("\\", "/")
    filename = os.path.splitext(os.path.basename(filename))[0]
    filename1 = filename.split('_')
    filename2 = ''
    for i in range(len(filename1)):
        filename2 += filename1[i]
    return int(filename2[-5:])

def get_categories(xml_files):
    """Generate category name to id mapping from a list of xml files.

    Arguments:
        xml_files {list} -- A list of xml file paths.

    Returns:
        dict -- category name to id mapping.
    """
    classes_names = []
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall("object"):
            classes_names.append(member[0].text)
    classes_names = list(set(classes_names))
    classes_names.sort()
    return {name: i for i, name in enumerate(classes_names)}

def convert(xml_files, json_file):
    json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []}
    if PRE_DEFINE_CATEGORIES is not None:
        categories = PRE_DEFINE_CATEGORIES
    else:
        categories = get_categories(xml_files)
    bnd_id = START_BOUNDING_BOX_ID
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        path = get(root, "path")
        if len(path) == 1:
            filename = os.path.basename(path[0].text)
        elif len(path) == 0:
            filename = get_and_check(root, "filename", 1).text
        else:
            raise ValueError("%d paths found in %s" % (len(path), xml_file))
        ## The filename must be a number
        # image_id = get_filename_as_int(filename)
        image_id = get_filename_as_integer(filename)
        size = get_and_check(root, "size", 1)
        width = int(get_and_check(size, "width", 1).text)
        height = int(get_and_check(size, "height", 1).text)
        image = {
            "file_name": filename,
            "height": height,
            "width": width,
            "id": image_id,
        }
        json_dict["images"].append(image)
        ## Currently we do not support segmentation.
        #  segmented = get_and_check(root, 'segmented', 1).text
        #  assert segmented == '0'
        for obj in get(root, "object"):
            category = get_and_check(obj, "name", 1).text
            if category not in categories:
                new_id = len(categories)
                categories[category] = new_id
            category_id = categories[category]
            bndbox = get_and_check(obj, "bndbox", 1)
            xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1
            ymin = int(float((get_and_check(bndbox, "ymin", 1).text))) - 1
            xmax = int(get_and_check(bndbox, "xmax", 1).text)
            ymax = int(get_and_check(bndbox, "ymax", 1).text)
            assert xmax > xmin
            assert ymax > ymin
            o_width = abs(xmax - xmin)
            o_height = abs(ymax - ymin)
            ann = {
                "area": o_width * o_height,
                "iscrowd": 0,
                "image_id": image_id,
                "bbox": [xmin, ymin, o_width, o_height],
                "category_id": category_id,
                "id": bnd_id,
                "ignore": 0,
                "segmentation": [],
            }
            json_dict["annotations"].append(ann)
            bnd_id = bnd_id + 1

    for cate, cid in categories.items():
        cat = {"supercategory": "none", "id": cid, "name": cate}
        json_dict["categories"].append(cat)

    os.makedirs(os.path.dirname(json_file), exist_ok=True)
    json_fp = open(json_file, "w")
    json_str = json.dumps(json_dict)
    json_fp.write(json_str)
    json_fp.close()


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(
        description="Convert Pascal VOC annotation to COCO format."
    )
    parser.add_argument("--xml_dir_train", default='./xml/xml_train/',
                        help="Directory path to xml files.", type=str)
    parser.add_argument("--json_file_train", default='./annotationsjson/instances_train2017.json',
                        help="Output COCO format json file.", type=str)
    parser.add_argument("--xml_dir_val", default='./xml/xml_val/',
                        help="Directory path to xml files.", type=str)
    parser.add_argument("--json_file_val",
                        default='./annotationsjson/instances_val2017.json',
                        help="Output COCO format json file.", type=str)
    args = parser.parse_args()
    xml_files_train = glob.glob(os.path.join(args.xml_dir_train, "*.xml"))
    xml_files_val = glob.glob(os.path.join(args.xml_dir_val, "*.xml"))

    # If you want to do train/test split, you can pass a subset of xml files to convert function.
    print("Number of xml files: {}".format(len(xml_files_train)))
    convert(xml_files_train, args.json_file_train)
    print("Success: {}".format(args.json_file_train))

    print("Number of xml files: {}".format(len(xml_files_val)))
    convert(xml_files_val, args.json_file_val)
    print("Success: {}".format(args.json_file_val))

    dir_path1 = './ImageSets'
    dir_path2 = './xml/'
    try:
        shutil.rmtree(dir_path1)
        shutil.rmtree(dir_path2)
    except OSError as e:
        print("Error: %s : %s" % (dir_path1, e.strerror))
        print("Error: %s : %s" % (dir_path2, e.strerror))
print('数据文件转换完成!')

代码运行后,生成annotationsjson问价夹存放对应的训练集和测试集的json标签。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵追慕者

您的支持是我写作分享最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值