OpenCV的DNN(Deep Neural Network)模块是一个强大的工具,允许开发者在计算机视觉应用中使用深度学习模型。该模块支持多种深度学习框架和模型格式,并提供了高效的推理能力。以下是对OpenCV DNN模块的详细介绍,包括其功能、支持的模型格式、基本使用方法,以及一些常见的应用示例。
功能简介
OpenCV的DNN模块提供以下主要功能:
1.加载和运行深度学习模型:支持从各种框架导入预训练的深度学习模型,并在OpenCV中执行推理。
2.图像预处理和后处理:提供了多种图像预处理和后处理功能,如图像缩放、归一化、颜色转换、非极大值抑制等。
3.支持多种硬件加速:支持使用CPU、GPU(通过OpenCL和CUDA)、Intel的Inference Engine等进行硬件加速。
4.易于集成:与OpenCV的其他模块无缝集成,便于在计算机视觉项目中使用。
支持的模型格式
OpenCV的DNN模块支持多种深度学习模型格式,包括但不限于:
1.Caffe:.caffemodel
(模型权重文件)和.prototxt
(模型配置文件)。
2.TensorFlow:.pb
(冻结的图文件)、.pbtxt
(文本图文件)。
3.Torch:.t7
(Torch7模型)。
4.ONNX:.onnx
(ONNX模型)。
5.Darknet:.cfg
(配置文件)和.weights
(权重文件)。
6.PyTorch:通过ONNX格式导出。