AGI大模型(34):Advanced RAG之Pre-Retrieval(预检索)优化——索引优化

1 Naive RAG缺陷

(1)检索效率低,检索结果不准确;

(2)用户问题比较抽象或者概念比较模糊;

(3)生成结果质量差,未忠实于检索文档的事实;

2 摘要索引

在处理大量文档时,如何快速准确地找到所需信息是一个常见挑战。摘要索引通过构建结构化的索引机制,解决了信息检索效率低下、查找困难的问题,使得用户能够快速、精准地定位和获取所需信息。

流程如下图:

先对文档进行分割

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不死鸟.亚历山大.狼崽子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值