讲座笔记:图匹配 Graph Matching 问题 | 机器学习&组合优化

本文深入介绍了图匹配技术,包括节点匹配、边匹配等不同场景下的挑战与解决方案。探讨了传统方法与机器学习相结合的新思路,如Spectral Approximation、Double-stochastic Approximation等,并详细解释了如何利用深度学习提升图匹配的准确性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

讲座信息:

Inroduction

图有很多相关问题,我们这里针对一类问题进行介绍:图匹配

Multi-Graph Matching via Affinity Optimization with Graduated Consistency Regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(6): 1228–1242.

图匹配就是:不仅考虑点之间的配准,还考虑边之间的配准 registration 。

Node-wise linear assignment problem

如上,匹配两个图,一个图有5个点,一个由4个点,我们要做的就是求解出一个5×4的0-1矩阵(组合优化问题),得到点与点间的匹配关系。

我的理解:

  • X X X的维度是 5 × 4 5\times 4 5×4
  • 1 的 维 度 是 5 × 1 \mathbb{1}的维度是 5\times 1 15×1 4 × 1 4\times 1 4×1
  • 由此, X 1 ≤ 1 X\mathbb{1}\le \mathbb{1} X11 X T 1 ≤ 1 X^T \mathbb{1}\le \mathbb{1} XT11就可以保证 X X X的行和列之和都小于1

一个很直接的求解方法是:计算点与点之间的相似度,构造Kp矩阵,然后求解这个规划模型。

Edge-wise graph matching

这个问题的难点在于,我们不仅仅要考虑点与点之间的相似性,还要考虑边与边之间的相似性。

可以看到边的数量明显上升。

如上,我们将点与边作为优化目标,加起来。

我们可以对点和边的关系进行编码,压缩成一个矩阵:affinity matrix 。

如上,对于5点对4点的情况,我们需要5乘4等于20规模的方阵,这样就可以两两编码(1a、1b、…、5d,共20个)。如上,3b行与5c列的交点意味着:3和5连成的边与b和c连成的边的相似度。但是这样K矩阵比较稀疏。

有了这个矩阵,我们将其转换为QAP。

Quadratic Assignment Problem

如上,转化为一个二次问题。注意到,vec 是向量化的意思,就是把 X 5 × 4 X_{5\times 4} X5×4 转化为 X 20 × 1 X_{20 \times 1} X20×1

这是一个 NP-hard 问题。

所以该如何求解呢?

Spectral Approximation

如上,松弛是一个好办法。求解快,但是得到的解很松弛。

Double-stochastic Approximation

此外,还可以考虑 将X变为连续变量的方式,这样的解可能更紧凑一些。

Beyond: Higher-order models

可否考虑一些高阶信息呢?

如上,在CV领域,3阶代表相似变换的不变性,4阶代表仿射变换的不变性。因此,是否可以将 graph 变为超图(提高阶数)?

但是,这不可行,维度爆炸。

Factorized model

如上,可以考虑进行分解。

如上,可以把大矩阵拆成小矩阵。

总结一下,在机器学习以前,有两个思路解决这个问题:

  • 不分解,直接做
  • 分解开,然后迭代

然而,在实际问题中,不仅仅是两张图的匹配,我们需要提取信息,并且能做到,多张图协同匹配。

Composition based Affinity Optimization

如上,有一种思想是,如果G1和G2匹配很难,是否可以通过G3作为中介(比如儿子于父母),分别与G1和G2匹配?

Recall over fitting in machine learning

算相似度只是用简单的高斯模型,并且,相似度基于直接从图形提取特征,而图形本身就可能存在噪声。

如上,我们不希望得到红线(一味地最求相似度),而是希望使用类似“正则”的思想,得到鲁棒的结果。

Cycle consistency as regularizer

在多图中,我们提出 consistency 的概念,注意,对于i和j,我们引入第三者第四者等等,用于计算 consistency ,这个值越高越接近1,则匹配效果越好。

于是,我们的目标函数就有了两部分:affinity score 和 consistency 。开始时,consistency 的权重不高,因为匹配效果不怎么样时,计算 consistency 也没用。

我们上述操作(类似正则的思想),都是在目标函数设计有缺陷的假设下的。还可用考虑用机器学习改善目标函数的建模。

Background: Learning on Graph Matching

Matching Score

基本思想:每对边、每队点权重都是相等的,都是1,接下来可以调整这些权重,以此区分重要和不重要的边对、点对。

我们优化的目标就是这些权值,如下图。

Learning Matching Function

如上,Π是对应关系,我们学的是ω。

Learning Graph Structure

于是,这就成为了一个结构化的机器学习问题。

如上图,我们最终学出的,是节点、边的权重。越大、越深,代表权重越大。

Learning Matching Features: Deep Learning of Graph Matching

能否用深度学习拥抱匹配任务?(这篇文章首发)

CNN与谱方法SM提取特征,之后对比一下,然后得到 loss 。但是,问题:SM本身不是做GM的solver,因此只能得出近似解;损失函数有缺陷,仅仅在计算两个对应点在空间中的距离(并不解决我们的匹配需求,匹配不再离得远不远,只在乎有没有配对准)。

Spectral Matching (SM)

简单介绍一下 SM 。

对于两个 Graph ,可以建立 Association Graph ,有一个据类,如图中加粗的线,是可行的匹配,则找到了一个可行解。好处是可以使梯度回传。

Embedding approach for Deep Graph Matching

于是主讲老师团队想着改进。

Learning Combinatorial Embedding Networks for Deep Graph Matching

如上,基础的PIA架构中(对前文工作的改进),使用了匈牙利算法的可求导版本 Sinkhorn 。此外,设计了一个 loss ,实际上就是一个交叉熵。

intra-GNN

交替地对每个点进行更新。“实际上就是GNN”。

对图做完嵌入后,把边信息都压缩到节点上,因此变为了一个只有点的问题,是一个 指派问题

Distance Metric

给定两个嵌入的结果 x i , x j x_i , x_j xi,xj,怎么算相似性?

s ( x i , x j ) = exp ⁡ ( x i T A x j ) s(x_i ,x_j )=\exp{(x_i^T \mathbf{A} x_j)} s(xi,xj)=exp(xiTAxj)

A \mathbf{A} A 是可学习的权重矩阵。exp保证非负。

Sinkhorn Algorithm

OK,现在有了距离的计算方法,构造非负距离矩阵。那怎么得到最后的匹配结果呢?做交替的 Row-Norm 和 Col-Norm ,直到行和列都是和为 1 为止(收敛到双随机矩阵)。这个过程就是 Sinkhorn Algorithm 。

Permutation Loss

因此,我们现在有了一个可以视为“类别概率”的矩阵,可以进行交叉熵计算。

此外,还有一些改进,如上:

  • 第 2 个架构 PCA-GM 用了 Cross-graph GNN ,为了更好协同地对两个图进行 embedding
  • 第 3 个架构 IPCA-GM 让迭代 iteratively ,强化了一下效果

效果很好。

Neural Graph Matching Network: Learning Lawler’s Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching

如上,主要贡献有:

  • 针对QAP做了端对端的机器学习
  • 扩展到了 hyper-graph matching
  • 扩展到了 multi-graph matching

什么是 Lawler’s QAP 呢?就是针对提取后的特征矩阵直接处理,不设计从生图提取特征的过程(没有什么感知层面、CNN层面科学的)。思想:直接在association graph 上做 embedding ,而不是两个图各自做 embedding 。

此外,针对多图,如上图架构图右侧,将两两匹配的结果拼到一起,构成一个大矩阵 joint matching matrix 。

QAPLIB Benchmark

可以看到,在 QAPLIB 做一些实例时,会有超过 baseline 的解(蓝线越低越好,有蓝线突破了虚线)。

Other techniques

如果一个图像里同时出现两个物体,如何以图匹配的方式分出来?

如果用 cut ,如上图,将导致中间一样两只天鹅头被放到一起。讲座信息:

Inroduction

图有很多相关问题,我们这里针对一类问题进行介绍:图匹配

Multi-Graph Matching via Affinity Optimization with Graduated Consistency Regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(6): 1228–1242.

图匹配就是:不仅考虑点之间的配准,还考虑边之间的配准 registration 。

Node-wise linear assignment problem

如上,匹配两个图,一个图有5个点,一个由4个点,我们要做的就是求解出一个5×4的0-1矩阵(组合优化问题),得到点与点间的匹配关系。

我的理解:

  • X X X 的维度是 5 × 4 5\times 4 5×4
  • 1 的 维 度 是 5 × 1 \mathbb{1}的维度是 5\times 1 15×1 4 × 1 4\times 1 4×1
  • 由此, X 1 ≤ 1 X\mathbb{1}\le \mathbb{1} X11 X T 1 ≤ 1 X^T \mathbb{1}\le \mathbb{1} XT11 就可以保证 X X X 的行和列之和都小于1

一个很直接的求解方法是:计算点与点之间的相似度,构造Kp矩阵,然后求解这个规划模型。

Edge-wise graph matching

这个问题的难点在于,我们不仅仅要考虑点与点之间的相似性,还要考虑边与边之间的相似性。

可以看到边的数量明显上升。

如上,我们将点与边作为优化目标,加起来。

我们可以对点和边的关系进行编码,压缩成一个矩阵:affinity matrix 。

如上,对于5点对4点的情况,我们需要5乘4等于20规模的方阵,这样就可以两两编码(1a、1b、…、5d,共20个)。如上,3b行与5c列的交点意味着:3和5连成的边与b和c连成的边的相似度。但是这样K矩阵比较稀疏。

有了这个矩阵,我们将其转换为QAP。

Quadratic Assignment Problem

如上,转化为一个二次问题。注意到,vec 是向量化的意思,就是把 X 5 × 4 X_{5\times 4} X5×4 转化为 X 20 × 1 X_{20 \times 1} X20×1

这是一个 NP-hard 问题。

所以该如何求解呢?

Spectral Approximation

如上,松弛是一个好办法。求解快,但是得到的解很松弛。

Double-stochastic Approximation

此外,还可以考虑 将X变为连续变量的方式,这样的解可能更紧凑一些。

Beyond: Higher-order models

可否考虑一些高阶信息呢?

如上,在CV领域,3阶代表相似变换的不变性,4阶代表仿射变换的不变性。因此,是否可以将 graph 变为超图(提高阶数)?

但是,这不可行,维度爆炸。

Factorized model

如上,可以考虑进行分解。

如上,可以把大矩阵拆成小矩阵。

总结一下,在机器学习以前,有两个思路解决这个问题:

  • 不分解,直接做
  • 分解开,然后迭代

然而,在实际问题中,不仅仅是两张图的匹配,我们需要提取信息,并且能做到,多张图协同匹配。

Composition based Affinity Optimization

如上,有一种思想是,如果G1和G2匹配很难,是否可以通过G3作为中介(比如儿子于父母),分别与G1和G2匹配?

Recall over fitting in machine learning

算相似度只是用简单的高斯模型,并且,相似度基于直接从图形提取特征,而图形本身就可能存在噪声。

如上,我们不希望得到红线(一味地最求相似度),而是希望使用类似“正则”的思想,得到鲁棒的结果。

Cycle consistency as regularizer

在多图中,我们提出 consistency 的概念,注意,对于i和j,我们引入第三者第四者等等,用于计算 consistency ,这个值越高越接近1,则匹配效果越好。

于是,我们的目标函数就有了两部分:affinity score 和 consistency 。开始时,consistency 的权重不高,因为匹配效果不怎么样时,计算 consistency 也没用。

我们上述操作(类似正则的思想),都是在目标函数设计有缺陷的假设下的。还可用考虑用机器学习改善目标函数的建模。

Background: Learning on Graph Matching

Matching Score

基本思想:每对边、每队点权重都是相等的,都是1,接下来可以调整这些权重,以此区分重要和不重要的边对、点对。

我们优化的目标就是这些权值,如下图。

Learning Matching Function

如上,Π是对应关系,我们学的是ω。

Learning Graph Structure

于是,这就成为了一个结构化的机器学习问题。

如上图,我们最终学出的,是节点、边的权重。越大、越深,代表权重越大。

Learning Matching Features: Deep Learning of Graph Matching

能否用深度学习拥抱匹配任务?(这篇文章首发)

CNN与谱方法SM提取特征,之后对比一下,然后得到 loss 。但是,问题:SM本身不是做GM的solver,因此只能得出近似解;损失函数有缺陷,仅仅在计算两个对应点在空间中的距离(并不解决我们的匹配需求,匹配不再离得远不远,只在乎有没有配对准)。

Spectral Matching (SM)

简单介绍一下 SM 。

对于两个 Graph ,可以建立 Association Graph ,有一个据类,如图中加粗的线,是可行的匹配,则找到了一个可行解。好处是可以使梯度回传。

Embedding approach for Deep Graph Matching

于是主讲老师团队想着改进。

Learning Combinatorial Embedding Networks for Deep Graph Matching

如上,基础的PIA架构中(对前文工作的改进),使用了匈牙利算法的可求导版本 Sinkhorn 。此外,设计了一个 loss ,实际上就是一个交叉熵。

intra-GNN

交替地对每个点进行更新。“实际上就是GNN”。

对图做完嵌入后,把边信息都压缩到节点上,因此变为了一个只有点的问题,是一个 指派问题

Distance Metric

给定两个嵌入的结果 x i , x j x_i , x_j xi,xj,怎么算相似性?

s ( x i , x j ) = exp ⁡ ( x i T A x j ) s(x_i ,x_j )=\exp{(x_i^T \mathbf{A} x_j)} s(xi,xj)=exp(xiTAxj)

A \mathbf{A} A 是可学习的权重矩阵。exp保证非负。

Sinkhorn Algorithm

OK,现在有了距离的计算方法,构造非负距离矩阵。那怎么得到最后的匹配结果呢?做交替的 Row-Norm 和 Col-Norm ,直到行和列都是和为 1 为止(收敛到双随机矩阵)。这个过程就是 Sinkhorn Algorithm 。

Permutation Loss

因此,我们现在有了一个可以视为“类别概率”的矩阵,可以进行交叉熵计算。

此外,还有一些改进,如上:

  • 第 2 个架构 PCA-GM 用了 Cross-graph GNN ,为了更好协同地对两个图进行 embedding
  • 第 3 个架构 IPCA-GM 让迭代 iteratively ,强化了一下效果

效果很好。

Neural Graph Matching Network: Learning Lawler’s Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching

如上,主要贡献有:

  • 针对QAP做了端对端的机器学习
  • 扩展到了 hyper-graph matching
  • 扩展到了 multi-graph matching

什么是 Lawler’s QAP 呢?就是针对提取后的特征矩阵直接处理,不设计从生图提取特征的过程(没有什么感知层面、CNN层面科学的)。思想:直接在association graph 上做 embedding ,而不是两个图各自做 embedding 。

此外,针对多图,如上图架构图右侧,将两两匹配的结果拼到一起,构成一个大矩阵 joint matching matrix 。

QAPLIB Benchmark

可以看到,在 QAPLIB 做一些实例时,会有超过 baseline 的解(蓝线越低越好,有蓝线突破了虚线)。

Other techniques

如果一个图像里同时出现两个物体,如何以图匹配的方式分出来?

如果用 cut ,如上图,将导致中间一样两只天鹅头被放到一起。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值