深度学习环境搭建过程中,初期阶段,相信大家都会遇到,动不动 TensorFlow 或者 Pytorch 库与Cuda、或者Cudnn 版本不匹配的问题;
因此很多时候,在一台服务器中安装多个Cuda逐步成为了各位搬砖大佬们的必然选择
🥇 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连
🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
-
🍊 精选专栏,环境搭建,一文读懂: 每篇博文都经过磨练捶打、为各位呈现最简洁的技术
-
🍊 Linux服务器下给当前用户安装自己的CUDA 图文教程
📔 服务器是团队或者项目组的,因此cuda还是自己的好用!!!
安装系统 :Ubuntu 18.04.5
🟧 1 cuda官网下载地址
cat /proc/version (Linux查看当前操作系统版本信息)
🟨 2 安装
# 先对安装包《cuda_10.0.130_410.48_linux.run》的属性进行修改为可执行;
chmod 755 cuda_10.0.130_410.48_linux.run
# 不要使用 sudo 进行安装
sh cuda_10.0.130_410.48_linux.run
过程如下,按空格读完协议,进行如下图的操作:
备注: 这里没有安装新的驱动,是因为:
- 1: root 用户 安装的 驱动 能够 支持当前 CUDA10.0的运行;
- 2: 驱动的更新安装,需要 root 权限 (也就是说 一台 Linux 服务器 只能 安装 一个英伟达内核驱动),团队的服务器,我没有权限去更新服务器的显卡驱动;
- 3:如果服务器本身 驱动版本 高 能够 同时 支持 CUDA10 和 CUDA9 ,那么我们这里安装的 CUDA10.0, 后面运行程序便是可行的;
🟦 3:环境变量的配置
cd /home/zhijian
vim .bashrc
# 在最下方添加刚刚安装cuda的路径:
---
export PATH="/home/zhijian/usr/local/cuda10/bin:$PATH"
export LD_LIBRARY_PATH="/home/zhijian/usr/local/cuda10/lib64:$LD_LIBRARY_PATH"
---
# 保存之后,使配置生效:
source .bashrc
- 命令行输入
nvcc -V
查看cuda版本,效果如下:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
说明 cuda10.0此次安装OK,已经不再使用服务器公共的cuda了
📕 配置自己的cudnn, 这里配置的cudnn版本为:7.6.0
🔴 1 官网下载
这个下载需要邮箱注册和登录,容易忘记密码,就很烦有没有。。。
🔵 2 解压 cudnn
从Nvidia官网上下载下来的cudnn for linux的文件格式是.solitairetheme8,想要解压的话需要先转成tgz格式再解压(这个操作我也被惊到了):
cp cudnn-10.0-linux-x64-v7.6.0.64.solitairetheme8 cudnn-10.0-linux-x64-v7.6.0.64.tgz
tar -zxvf cudnn-10.0-linux-x64-v7.6.0.64.tgz
🟣 3 安装配置【替换即可】
cp cuda/include/cudnn.h /home/zhijian/usr/local/cuda10/include/
cp cuda/lib64/libcudnn.s* /home/zhijian/usr/local/cuda10/lib64/
chmod 755 /home/zhijian/usr/local/cuda10/include/cudnn.h
# 查看cudnn版本
cat /home/zhijian/usr/local/cuda10/include/cudnn.h | grep CUDNN_MAJOR -A 2
- 我得到的正确输出如下:
📙 友情提示
- 我上面安装的 cuda10.0 和 cudnn 7.6.0 是因为代码训练TensorFlow-GPU 版本为2.0,各位需要根据自己的需求情况来安装相应的 cuda 和 cudnn版本,版本不匹配有时候会导致很多麻烦呐…
- TensorFlow2.0-GPU 训练走起…
- 最新博文 – ubuntu18给当前用户安装cuda11.2 图文教程 | 配置cuDNN8.1
📙 预祝各位 前途似锦、可摘星辰
- 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
- ❤️ 如果文章对你有帮助、点赞、评论鼓励博主的每一分认真创作
计算机视觉领域 八大专栏、不少干货、有兴趣可了解一下
- ❤️ 图像风格转换 —— 代码环境搭建 实战教程【关注即可阅】!
- 💜 图像修复-代码环境搭建-知识总结 实战教程 【据说还行】
- 💙 超分重建-代码环境搭建-知识总结 解秘如何让白月光更清晰【脱单神器】
- 💛 YOLO专栏,只有实战,不讲道理 图像分类【建议收藏】!
-
🍊 深度学习:环境搭建,一文读懂
-
🍊 深度学习:趣学深度学习
-
🍊 落地部署应用:模型部署之转换-加速-封装
-
🍊 CV 和 语音数据集:数据集整理
-
📆 最近更新:2022年4月5日 ,补充更新
-
🍊 点赞 👍 收藏 ⭐留言 📝 都是博主坚持写作、更新高质量博文的最大动力!