Linux服务器下给当前用户安装自己的CUDA、CUDA 还是自己的好用 【有效安装教程】

本文提供在Ubuntu18.04.5环境下,针对个人用户安装CUDA10.0及配置CuDNN7.6.0的详细步骤。涵盖下载、安装、环境变量配置及版本验证,适用于深度学习环境搭建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习环境搭建过程中,初期阶段,相信大家都会遇到,动不动 TensorFlow 或者 Pytorch 库与Cuda、或者Cudnn 版本不匹配的问题;


因此很多时候,在一台服务器中安装多个Cuda逐步成为了各位搬砖大佬们的必然选择

🥇 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连
🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️

0-9

1-5


📔 服务器是团队或者项目组的,因此cuda还是自己的好用!!!


安装系统 :Ubuntu 18.04.5

🟧 1 cuda官网下载地址

cat /proc/version (Linux查看当前操作系统版本信息)

1

🟨 2 安装

# 先对安装包《cuda_10.0.130_410.48_linux.run》的属性进行修改为可执行;

chmod 755 cuda_10.0.130_410.48_linux.run

# 不要使用 sudo 进行安装
sh cuda_10.0.130_410.48_linux.run

过程如下,按空格读完协议,进行如下图的操作:

备注: 这里没有安装新的驱动,是因为:

  • 1: root 用户 安装的 驱动 能够 支持当前 CUDA10.0的运行;
  • 2: 驱动的更新安装,需要 root 权限 (也就是说 一台 Linux 服务器 只能 安装 一个英伟达内核驱动),团队的服务器,我没有权限去更新服务器的显卡驱动;
  • 3:如果服务器本身 驱动版本 高 能够 同时 支持 CUDA10 和 CUDA9 ,那么我们这里安装的 CUDA10.0, 后面运行程序便是可行的;

2

🟦 3:环境变量的配置

cd /home/zhijian
vim .bashrc

# 在最下方添加刚刚安装cuda的路径:
---
export PATH="/home/zhijian/usr/local/cuda10/bin:$PATH"
export LD_LIBRARY_PATH="/home/zhijian/usr/local/cuda10/lib64:$LD_LIBRARY_PATH"
---

# 保存之后,使配置生效:  
source .bashrc   
  • 命令行输入 nvcc -V 查看cuda版本,效果如下:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130

说明 cuda10.0此次安装OK,已经不再使用服务器公共的cuda了


📕 配置自己的cudnn, 这里配置的cudnn版本为:7.6.0


TensorFlow1.2~2.1各GPU版本与CUDA对应版本|简记

🔴 1 官网下载

这个下载需要邮箱注册和登录,容易忘记密码,就很烦有没有。。。

2

🔵 2 解压 cudnn

从Nvidia官网上下载下来的cudnn for linux的文件格式是.solitairetheme8,想要解压的话需要先转成tgz格式再解压(这个操作我也被惊到了):

cp cudnn-10.0-linux-x64-v7.6.0.64.solitairetheme8 cudnn-10.0-linux-x64-v7.6.0.64.tgz

tar -zxvf cudnn-10.0-linux-x64-v7.6.0.64.tgz

🟣 3 安装配置【替换即可】

 cp cuda/include/cudnn.h /home/zhijian/usr/local/cuda10/include/

 cp cuda/lib64/libcudnn.s* /home/zhijian/usr/local/cuda10/lib64/

 chmod 755 /home/zhijian/usr/local/cuda10/include/cudnn.h
 
# 查看cudnn版本 
 cat /home/zhijian/usr/local/cuda10/include/cudnn.h | grep CUDNN_MAJOR -A 2
  • 我得到的正确输出如下:

3


📙 友情提示


9-8
9-9


📙 预祝各位 前途似锦、可摘星辰


  • 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • ❤️ 如果文章对你有帮助、点赞、评论鼓励博主的每一分认真创作

计算机视觉领域 八大专栏、不少干货、有兴趣可了解一下

9-9

### CUDA Toolkit在Linux服务器上的安装教程 #### 准备工作 确保系统已更新至最新状态并安装必要的依赖项。对于基于Debian/Ubuntu的发行版,可以执行以下命令来准备环境[^1]: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential cmake git unzip pkg-config libopencv-dev ``` #### 添加NVIDIA软件源 为了简化CUDA Toolkit及其驱动程序的安装过程,在大多数情况下建议添加官方维护的NVIDIA APT仓库到系统的包管理器配置文件中。这一步骤能够帮助自动处理依赖关系,并允许更方便地管理和升级CUDA组件。 针对不同的操作系统版本有不同的URL地址;这里以最新的稳定分支为例说明如何设置APT源列表: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo wget https://developer.download.nvidia.com/compute/cuda/11.5.1/local_installers/cuda-repo-ubuntu2004-11-5-local_11.5-470.57.02-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu2004-11-5-local_11.5-470.57.02-1_amd64.deb sudo cp /var/cuda-repo-ubuntu2004-11-5-local/cuda-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update ``` #### 安装CUDA Toolkit及相关组件 完成上述准备工作之后就可以正式开始安装CUDA Toolkit了。考虑到不同应用场景的需求差异较大,可以选择仅安装核心部分或是连同其他辅助工具一起部署: 只安装最小化的CUDA运行时支持(适用于已经预装好显卡驱动的情况) ```bash sudo apt-get -y install cuda-toolkit-11-5 ``` 全量安装包括文档、示例在内的全部资源 ```bash sudo apt-get -y install cuda ``` #### 配置环境变量 为了让编译器和其他命令行工具能够在任何地方被调用,还需要调整PATH和LD_LIBRARY_PATH两个重要的shell环境变量。编辑`~/.bashrc`或其他相应的启动脚本文件,加入如下几行内容: ```bash export PATH=/usr/local/cuda-11.5/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.5/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 使更改立即生效: ```bash source ~/.bashrc ``` #### 测试安装成果 最后验证新安装好的CUDA是否正常运作。可以通过编写简单的测试程序来进行初步检测,也可以直接利用内置的帮助信息确认当前使用的具体版本号。 ```bash nvcc --version ``` 如果一切顺利的话,则可以看到类似于下面这样的输出结果,表明CUDA已经被成功激活并且处于可用状态[^2]: ```text nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Thu_Nov_18_09:45:30_PST_2021 Cuda compilation tools, release 11.5, V11.5.119 Build cuda_11.5.r11.5/compiler.30672275_0 ``` #### 使用Conda安装特定版本CUDA Toolkit 对于那些希望通过Anaconda平台获取指定版本CUDA的支持用户来说,可以直接借助于Conda渠道快速实现目标。例如要为PyTorch项目定制化构建一套带有CUDA 11.1兼容性的虚拟环境,只需按照下列指令操作即可[^3]: ```bash conda create -n myenv python=3.9 conda activate myenv conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值