人脸检测识别相关数据集整理

博客围绕人脸数据集展开,介绍了DARK FACE低光条件人脸检测数据集及相关链接,还提及UFDD无约束人脸检测数据集。同时指出当前人脸检测虽有进步,但仍存在未解决问题。此外,给出查阅相关数据集的paper链接,还列举了CelebA - Spoof等人脸识别相关数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

❤️【专栏:数据集整理】❤️ 之【有效拒绝假数据】


👋 Follow me 👋,一起 Get 更多有趣 AI、冲冲冲 🚀 🚀


DARK FACE: Face Detection in Low Light Condition


数据集链接如下:

该链接页面还有其它两个检测可用数据集:

1-1

https://ufdd.info/

在过去的几年里,人脸检测取得了巨大的进步,每年都有新的里程碑被超越。虽然成功解决了许多挑战,例如规模、姿势、外观的大变化,但仍然存在一些现有方法或数据集没有专门捕获的问题。在这项工作中,我们确定了需要研究界关注的下一组挑战,并收集了一个新的人脸图像数据集,这些数据集涉及这些问题,例如基于天气的退化、运动模糊、焦点模糊等。我们证明,最先进的检测器的性能与现实世界的要求之间存在相当大的差距。因此,为了推动对无约束人脸检测的进一步研究,我们提出了一个新的带注释的无约束人脸检测数据集(UFDD),其中包含几个挑战和基准最近的方法。此外,我们对这些方法的结果和失败案例进行了深入分析。

1-2


查阅相关 paper 来 检索相关数据集


2-1


人脸识别相关数据集


9-6


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值