YOLOX (pytorch)模型 ONNX export | ❤️运行推理❤️【YOLOX 实战二】

该博客介绍了如何将YOLOX模型转换为ONNX格式并使用ONNXRuntime进行推理测试。首先,通过`export_onnx.py`脚本将预训练的YOLOX_s模型导出为yolox_s.onnx,然后使用ONNXRuntime进行实时推理,展示了一个使用ONNXRuntime进行对象检测的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 🥇 版权: 本文由【墨理】原创、在CSDN首发、如需转载,请联系博主


🥇 YOLOX Deployment


📔 ONNX export and an ONNXRuntime


所参考教程


📕 环境搭建


环境搭建,可以参考上篇博文


🟧 export_onnx



cd yoloDir

git clone https://github.com/Megvii-BaseDetection/YOLOX.git

cd YOLOX

# 运行命令:

python3 tools/export_onnx.py --output-name yolox_s.onnx -n yolox-s -c preModels/yolox_s.pth

## 或者,两种指定方式都可以

# 如果说是,自己定义扩展的 YOLO ,那么 需要使用 -f 指定 xx.py 文件的方式

python3 tools/export_onnx.py --output-name yolox_s.onnx -f exps/default/yolox_s.py -c preModels/yolox_s.pth

输出如下【得到 yolox_s.onnx 】:

...

2021-08-25 09:08:00.847 | INFO     | __main__:main:55 - args value: 

Namespace(ckpt='preModels/yolox_s.pth', exp_file=None, experiment_name=None, input='images', name='yolox-s', no_onnxsim=False, opset=11, opts=[], output='output', output_name='yolox_s.onnx')
2021-08-25 09:08:01.075 | INFO     | __main__:main:79 - loading checkpoint done.

## 先转为 yolox_s.onnx,然后 simplified 

2021-08-25 09:08:06.185 | INFO     | __main__:main:89 - generated onnx model named yolox_s.onnx
2021-08-25 09:08:08.043 | INFO     | __main__:main:101 - generated simplified onnx model named 

yolox_s.onnx

查看代码可以看到,–no-onnxsim 默认为 False

1-0

参数解析

1-1


🟨 ONNXRuntime Demo 【yolox_s.onnx 推理测试】



cd YOLOX/demo/ONNXRuntime

python3 onnx_inference.py -m ../../yolox_s.onnx -i ../../assets/dog.jpg -o ./ -s 0.3 --input_shape 640,640

生成 和 原图 名字一致的 带检测图片,效果如下

2-1

参数解析

2-2


  • ❤️ 你只看一篇就够用的教程 感谢各位大佬一键三连

9-8


评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值