open-mmlab/mmocr 环境搭建、推理和训练入门教程【一】

该文介绍了如何在Linux环境下搭建open-mmlab/mmocr的运行环境,包括使用conda创建环境、安装依赖、下载数据集和预训练模型。文章详细展示了推理、训练、测试的命令行操作,并提供了训练配置的修改示例,以及训练和测试过程中的GPU占用情况。最后,文章演示了模型的可视化输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1-0

博文基础信息

Linux 搭建 open-mmlab/mmocr 运行环境

conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
git clone https://github.com/open-mmlab/mmocr.git
cd mmocr
mim install -e .
准备数据集
wget https://download.openmmlab.com/mmocr/data/icdar2015/mini_icdar2015.tar.gz
mkdir -p data/
tar xzvf mini_icdar2015.tar.gz -C data/

# 我这里选择 把 mini_icdar2015  重命名为 icdar2015
cd  data
mv mini_icdar2015 icdar2015
准备必要的预训练模型

如果服务器网络不通畅,可以复制链接,自行到浏览器下载之后,再复制到 /home/用户名/.cache/torch/hub/checkpoints 目录下

# 下载链接
https://download.pytorch.org/models/resnet18-f37072fd.pth

0-6

推理

0-7

推理命令如下

# 推理会自动下载 DBNet  和 CRNN 模型
python tools/infer.py demo/demo_text_ocr.jpg --det DBNet --rec CRNN --show --print-result

测试GPU 占用如下

1-0

训练

修改配置文件

vi configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py

添加如下代码

# 每 10 个 epoch 储存一次权重,且只保留最后一个权重
default_hooks = dict(
    checkpoint=dict(
        type='CheckpointHook',
        interval=10,
        max_keep_ckpts=1,
    ))
# 设置最大 epoch 数为 400,每 10 个 epoch 运行一次验证
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=400, val_interval=10)
# 令学习率为常量,即不进行学习率衰减
param_scheduler = [dict(type='ConstantLR', factor=1.0),]

1-00

单卡训练命令如下

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py

单卡训练GPU 占用如下

1-1
1-2

测试

对刚刚测试生成的模型进行测试

CUDA_VISIBLE_DEVICES=0 python tools/test.py configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015/epoch_400.pth

data_root='icdar2015_textdet_data_root', 时 输出如下

1-9

data_root='tests/data/det_toy_dataset', 时 输出如下

1-3

可视化输出

可视化结果保存在 imgs/ 目录下

python tools/test.py configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015/epoch_400.pth --show-dir imgs/

可视化效果如下

  • 真实标签和预测值会在可视化结果中以平铺的方式展示。左图的绿框表示真实标签,右图的红框表示预测值。

1-10


📙 预祝各位 前途似锦、可摘星辰


  • 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • ❤️ 过去的每一天、想必你也都有努力、祝你披荆斩棘、未来可期

9-9

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值