Spring Cloud Stream App Starters Einstein SR6 是 Spring Cloud Stream 中的一个应用启动器,它提供了一系列预配置的模板和依赖项,用于快速开发基于消息驱动的微服务。这些启动器基于 Spring Boot 和 Spring Integration 构建,支持与多种消息中间件(如 Apache Kafka 和 RabbitMQ)进行通信。
功能特点
- 预构建的应用程序:Spring Cloud Stream App Starters 提供了一系列可独立运行的预构建应用程序,这些应用程序可以通过 Spring Cloud Data Flow 进行管理和编排。
- 多种消息中间件支持:支持与多种消息中间件集成,包括 Apache Kafka 和 RabbitMQ。
- 简化开发流程:通过提供预配置的模板和依赖项,开发者可以快速启动和运行基于消息驱动的微服务。
- 灵活的绑定机制:应用程序通过定义输入(inputs)和输出(outputs)通道与消息中间件进行交互,具体的消息中间件可以通过配置进行绑定。
使用方法
- Maven 依赖:可以通过添加 Maven 依赖来引入所需的 App Starter。例如,引入一个 Cassandra Sink 的依赖:
<dependency> <groupId>org.springframework.cloud.stream.app</groupId> <artifactId>spring-cloud-starter-stream-sink-cassandra</artifactId> <version>2.1.0.BUILD-SNAPSHOT</version> </dependency>
- Docker 支持:预构建的应用程序也提供了 Docker 镜像,可以在 Docker Hub 上找到。
- 自定义构建:开发者也可以通过运行 Maven 插件来自定义构建应用程序。
示例
以下是一个简单的 JMS Source 示例,用于从 JMS 接收消息并将其发送到流中:
java -jar jms-source.jar --jms.destination=queueName
总结
Spring Cloud Stream App Starters Einstein SR6 提供了一种快速开发和部署消息驱动微服务的方式,支持多种消息中间件,并通过预构建的应用程序和灵活的绑定机制简化了开发流程。
Spring Cloud Stream App Starters Einstein SR6 是 Spring Cloud Stream 中的一个应用启动器,它提供了一些预配置的模板和依赖项,用于快速开发基于消息驱动的微服务。Einstein SR6 是一个示例项目,展示了如何使用 Spring Cloud Stream 来构建一个响应式的消息处理应用程序。
这个示例项目主要包含以下几个部分:
-
消息通道:使用 Spring Cloud Stream 提供的消息通道来接收和发送消息。这些通道可以连接到各种消息中间件,如 RabbitMQ、Kafka 等。
-
处理器:定义了如何处理接收到的消息。在这个示例中,处理器会对接收到的消息进行简单的处理,并输出结果。
-
配置:通过配置文件(如 application.yml 或 application.properties)来配置消息中间件的连接参数、通道名称等信息。
-
依赖管理:通过 Maven 或 Gradle 来管理项目的依赖项,确保所需的库和框架都已包含在项目中。
-
测试用例:提供了一些基本的单元测试和集成测试,用于验证消息处理逻辑的正确性。
Spring Cloud Stream App Starters Einstein SR6 是一个基于 Spring Cloud Stream 的应用程序启动器,它主要用于构建和运行微服务架构中的流数据处理应用。其主要功能包括: -
消息驱动:该应用启动器支持通过消息中间件(如 RabbitMQ、Kafka 等)进行异步通信,实现微服务之间的解耦和高效的消息传递。
-
流处理:Einstein SR6 提供了强大的流处理能力,可以对数据流进行实时处理、过滤、转换和聚合等操作,从而满足各种复杂的业务需求。
-
事件驱动架构:支持事件驱动架构,能够快速响应外部事件,并触发相应的业务逻辑,提高系统的灵活性和响应速度。
-
扩展性:该启动器具有良好的扩展性,可以轻松集成其他 Spring Cloud 组件,如 Spring Cloud Data Flow,用于管理和编排流数据处理管道。
-
高可用性和容错性:通过与 Spring Cloud 的其他组件(如 Hystrix)集成,可以实现高可用性和容错机制,确保系统在面对故障时依然能够稳定运行。
-
监控和管理:提供丰富的监控和管理功能,可以通过 Spring Boot Actuator 和 Spring Cloud Sleuth 等工具来监控系统的运行状态和性能指标。
-
简化开发:通过自动配置和约定优于配置的原则,简化了开发人员的工作,减少了样板代码的编写,提高了开发效率。
Spring Cloud Stream 是 Spring Cloud 中的一个组件,用于构建消息驱动的微服务。它提供了一种简单的方式来创建响应式的消息驱动应用程序,并集成了各种消息中间件(如 RabbitMQ、Kafka 等)。
Spring Cloud Stream 的主要特点包括:
-
简化配置:通过自动配置和绑定机制,减少了与消息中间件交互的配置工作。开发者只需定义通道(Channel)和处理器(Processor),即可完成消息的发布和订阅。
-
支持多种消息中间件:Spring Cloud Stream 支持多种常见的消息中间件,如 RabbitMQ、Kafka、ActiveMQ 等,使得开发者可以灵活选择适合自己业务需求的消息队列系统。
-
声明式编程模型:通过注解或 Java 配置类,开发者可以方便地定义消息的发布和消费逻辑,而无需编写大量的样板代码。
-
响应式编程:Spring Cloud Stream 基于 Spring WebFlux 和 Reactor 库,支持响应式编程模型,能够高效处理高并发场景下的消息流。
-
事务管理:提供了对分布式事务的支持,确保消息的可靠传输和一致性。例如,在 Kafka 中,可以通过分区事务来保证消息的原子性。
-
监控和管理:集成了 Spring Boot Actuator,提供丰富的监控和管理端点,便于运维人员查看消息系统的运行状态和性能指标。
-
扩展性:Spring Cloud Stream 具有良好的扩展性,允许开发者自定义处理器、连接器等组件,以满足特定的业务需求。
Spring Cloud Stream 是一个用于构建消息驱动微服务的重要框架,它支持多种消息中间件。以下是 Spring Cloud Stream 支持的一些主要消息中间件: -
Apache Kafka:Kafka 是一种分布式流处理平台,可以处理高吞吐量的数据。Spring Cloud Stream 提供了对 Kafka 的原生支持,使得开发者可以轻松地集成 Kafka 进行消息传递和事件驱动的应用开发。
-
RabbitMQ:RabbitMQ 是一种流行的开源消息代理软件,支持复杂的消息路由、任务队列和发布/订阅模式。Spring Cloud Stream 也提供了对 RabbitMQ 的完整支持,允许开发者使用高级的消息传递功能。
-
Redis:虽然 Redis 通常被用作内存数据库,但它也可以作为消息代理来使用。Spring Cloud Stream 支持 Redis 作为消息中间件,适用于需要快速消息传递和简单队列操作的场景。
-
Google Pub/Sub:对于在 Google Cloud Platform 上运行的应用,Spring Cloud Stream 提供了对 Google Pub/Sub 的支持。这是一种基于主题的消息传递服务,适合需要高可靠性和可扩展性的应用。
-
AWS Kinesis:Amazon Kinesis 是 AWS 提供的一种实时数据处理服务,Spring Cloud Stream 也支持与 AWS Kinesis 的集成,适用于需要处理大量数据流的场景。
这些消息中间件的支持使得 Spring Cloud Stream 能够在不同的环境中灵活应用,满足各种业务需求。
Spring Cloud Stream Application Starters are standalone executable applications that communicate over messaging middleware such as Apache Kafka and RabbitMQ. These applications can run independently on variety of runtime platforms including: Cloud Foundry, Apache Yarn, Apache Mesos, Kubernetes, Docker, or even on your laptop.
Features
Run standalone as Spring Boot applications
Compose microservice as streaming pipelines in Spring Cloud Data Flow
Consume microservice applications as maven or docker artifacts
Override configuration parameters via command-line, environment variables, or YAML file
Provide infrastructure to test the applications in isolation
Download as starters from this version of Spring Initializr
Available Applications
Source Processor Sink
cdc-debezium
aggregator
cassandra
file
bridge
counter
ftp
counter
file
gemfire
filter
ftp
gemfire-cq
groovy-filter
gemfire
http
groovy-transform
gpfdist
jdbc
grpc
hdfs
jms
header-enricher
jdbc
load-generator
httpclient
log
loggregator
pmml
rabbit
python-http
mongodb
mongodb
python-jython
mqtt
mqtt
scripable-transform
pgcopy
rabbit
splitter
redis
s3
tasklauncherrequest-transform
router
sftp
tcp-client
s3
sftp-dataflow
transform
sftp
syslog
tensorFlow
tcp
tcp
twitter-sentiment /tensorflow/
throughput
tcp-client
image-recognition /tensorflow/
websocket
time
object-detection /tensorflow/
task-launcher-dataflow
trigger
pose-estimation /tensorflow/
triggertask
twitterstream
Stream App Starters and Spring Cloud Data Flow (**)
With Spring Boot 2.1.x + Spring Cloud Stream 2.1.x:
Artifact Type Stable Release Snapshot Release
RabbitMQ + Maven
https://dataflow.spring.io/rabbit-maven-latest
https://dataflow.spring.io/Einstein-BUILD-SNAPSHOT-stream-applications-rabbit-maven
RabbitMQ + Docker
https://dataflow.spring.io/rabbit-docker-latest
https://dataflow.spring.io/Einstein-BUILD-SNAPSHOT-stream-applications-rabbit-docker
Apache Kafka + Maven
https://dataflow.spring.io/kafka-maven-latest
https://dataflow.spring.io/Einstein-BUILD-SNAPSHOT-stream-applications-kafka-maven
Apache Kafka + Docker
https://dataflow.spring.io/kafka-docker-latest
https://dataflow.spring.io/Einstein-BUILD-SNAPSHOT-stream-applications-kafka-docker
(**) find out how to use the app-starters in Spring Cloud Data Flow by reviewing the app-registration section in the reference guide
HTTP Repository Location for Apps
Versions: Boot / Stream Rabbit MQ Apache Kafka
Spring Boot 2.1.x / Spring Cloud Stream 2.1.x
Stable Release / Latest Snapshot
Stable Release / Latest Snapshot
Spring Boot Config
Step 1 - Download the latest time-source application from here [eg: /2.1.2.RELEASE/time-source-kafka-2.1.2.RELEASE.jar]
Step 2 - Download the latest log-sink application from here [eg: /2.1.3.RELEASE/log-sink-kafka-2.1.3.RELEASE.jar]
Step 3 - Start Kafka
Step 4 - Run Time Source and Bind to ticktock Topic
java -jar time-source-kafka-***.jar --spring.cloud.stream.bindings.output.destination=ticktock
Step 5 - Run Log Sink and Bind to ticktock Topic
java -jar log-sink-kafka-***.jar --spring.cloud.stream.bindings.input.destination=ticktock
Step 6 - Verify ticktock ouput in log-sink console
Spring Initializr
Quickstart Your Project
Bootstrap your application with Spring Initializr.