设置检测标准和规则是智能检测系统中的一个关键步骤,它涉及到定义产品的质量要求和检测过程中应遵循的准则。以下是设置检测标准和规则的一般步骤:
1. 确定检测目标
- 明确检测目的:确定需要检测的产品特性,如尺寸、形状、颜色、表面缺陷等。
- 识别关键质量特性:确定哪些特性对产品质量至关重要。
2. 收集和分析数据
- 历史数据:分析过去的检测数据,了解常见的缺陷类型和频率。
- 行业标准:参考行业标准和法规要求,确保检测标准符合行业规范。
3. 定义检测标准
- 质量标准:设定可接受的质量水平,如缺陷率、尺寸公差等。
- 性能标准:定义产品在特定条件下应达到的性能指标。
4. 制定检测规则
- 检测流程:明确检测的步骤和顺序。
- 检测方法:选择适合的检测技术,如视觉检测、尺寸测量、功能测试等。
- 参数设置:为检测设备或软件设置必要的参数,如分辨率、灵敏度、阈值等。
5. 建立检测模型
- 数据收集:收集足够的样本数据用于训练检测模型。
- 模型训练:使用机器学习或深度学习技术训练检测模型。
- 模型验证:通过测试数据验证模型的准确性和可靠性。
6. 实施和监控
- 部署检测系统:将检测标准和规则集成到智能检测系统中。
- 持续监控:监控检测过程,确保检测标准和规则得到正确执行。
- 定期评估:定期评估检测标准和规则的有效性,并根据需要进行调整。
7. 文档化和培训
- 文档记录:记录所有的检测标准和规则,便于管理和查阅。
- 员工培训:对操作人员进行培训,确保他们理解并能够正确执行检测标准和规则。
8. 反馈和改进
- 收集反馈:从操作人员和客户那里收集关于检测标准的反馈。
- 持续改进:根据反馈不断改进检测标准和规则,以适应生产和市场的变化。
通过这些步骤,可以确保检测标准和规则既科学又实用,能够有效地指导智能检测系统的运行,提高产品质量和生产效率。
以下是用文字描述的质量检测系统流程图步骤,你可以使用绘图工具(如Visio、亿图图示、ProcessOn 等)进行绘制:
开始
- 流程启动。
基础信息管理
- 输入:无
- 操作:管理员设置检测标准和检测规则等基础信息。
- 输出:设定好的基础信息
检测模型部署
- 输入:基础信息
- 操作:管理员依据基础信息,对常用机器检测方法建立检测模型分布。
- 输出:部署好的检测模型
图像采集
- 输入:待检测产品
- 操作:采集产品结构、生产时间、图像信号和产品图像等信息并存储。
- 输出:产品图像及相关信息
缺陷检测
- 输入:产品图像及相关信息、检测模型、检测质量标准
- 操作:依据检测模型和检测质量标准对产品图像进行检测,判断产品是否合格。若有一张图像不合格,则产品判定为不合格。
- 输出:合格/不合格判定结果,不合格产品需记录产品型号和不合格类型
质量检测
- 输入:缺陷检测结果、监控规则
- 操作:根据监控规则对产品质量进行监控。
- 输出:检测情况
检测情况处理
- 输入:检测情况
- 操作:
- 若产品合格,将检测情况展示给检测业务员,流程结束。
- 若产品不合格,将检测情况展示给检测业务员,同时判断是否满足远程控制条件:
- 若不满足,流程结束。
- 若满足,向检测设备发送控制指令进行处理,然后将处理后的情况反馈给检测业务员,流程结束。
模型监控
- 输入:系统中部署的模型、产品的检测信息、基础信息
- 操作:进行监测分析,将模型运行情况数据发送给监控人员。
- 输出:无,流程结束 。
题目分析与解答
- 确定参与者
- 管理员:进行基础信息管理(设置检测标准和规则等)、检测模型部署(对常用机器检测方法建立检测模型分布 )。
- 检测业务员:接收质量检测情况展示,接收质量检测满足条件时的远程控制指令。
- 监控人员:接收系统中部署的模型、产品的检测信息结合基础信息进行监测后发送的情况数据 。
- 确定用例
- 基础信息管理:管理员设置检测标准和检测规则等基础信息。
- 检测模型部署:管理员对常用机器检测方法建立检测模型分布。
- 图像采集:管理检测多样的产品学习检测建立存储,包括产品结构、生产时间、图像信号和产品图像。
- 缺陷检测:根据检测模型和质量标准对图像采集的产品图像进行检测,判定产品合格与否,记录不合格产品的型号和不合格类型。
- 质量检测:根据监控规则对产品质量进行监控,向检测业务员展示情况,满足条件时发送远程控制指令给检测设备。
- 模型监控:将系统中部署的模型、产品检测信息结合基础信息监测情况数据发送给监控人员。
绘制步骤
-
绘制参与者:在图的边缘分别画出代表管理员、检测业务员、监控人员的小人图形,并标注名称。
-
绘制用例:在图中间区域,用椭圆表示各个用例,并标注用例名称。
-
绘制关系连线:用直线连接参与者和对应的用例,表明参与者与用例之间的关联关系。例如,管理员与“基础信息管理”“检测模型部署”用例相连;检测业务员与“质量检测”用例相连;监控人员与“模型监控”用例相连等。
图中描述的是一个制造企业为了提升检测效率和节约人力资源而开发的软件智能检测系统。该系统的主要功能包括: -
基础信息管理:管理员可以设置检测标准和检测规则等基础信息。
-
检测模型部署:管理员可以使用机器学习方法建立检测模型。
-
图像采集:系统会实时采集产品结构、生产时间、图像信号和产品图像等信息。
-
缺陷检测:系统会根据检测模型和质量标准对图像进行检测,如果发现不合格的产品,会记录产品型号和不合格类型。
-
质量检测:系统会根据监控规则对产品质量进行监控,如果满足条件,会发送质量检测指令给检测设备。
-
模型监控:系统会监控模型的运行情况,并将情况发送给监控人员。
为了回答图中的问题,我们需要进行以下步骤:
- 分析与设计:使用结构化方法对智能检测系统进行分析和设计。
- 数据流图:绘制数据流图,展示数据在系统中的流动情况。
- 数据流程图:绘制数据流程图,展示数据处理的详细步骤。
由于图中没有提供具体的数据流图和数据流程图,我将为你提供一个基本的框架,你可以根据实际情况进行调整:
数据流图(DFD)
-
外部实体:
- 管理员
- 检测设备
- 监控人员
-
数据存储:
- 基础信息数据库
- 检测模型数据库
- 图像数据库
- 检测结果数据库
-
数据流:
- 管理员输入检测标准和规则到基础信息数据库。
- 管理员部署检测模型到检测模型数据库。
- 系统从图像数据库获取图像数据。
- 系统将图像数据和检测模型输入到缺陷检测模块。
- 缺陷检测模块输出检测结果到检测结果数据库。
- 质量检测模块根据监控规则发送质量检测指令到检测设备。
- 模型监控模块将模型运行情况发送给监控人员。
数据流程图(DFD)
-
基础信息管理:
- 管理员输入检测标准和规则。
- 系统存储到基础信息数据库。
-
检测模型部署:
- 管理员输入检测模型。
- 系统存储到检测模型数据库。
-
图像采集:
- 系统从图像数据库获取图像数据。
-
缺陷检测:
- 系统将图像数据和检测模型输入到缺陷检测模块。
- 缺陷检测模块输出检测结果到检测结果数据库。
-
质量检测:
- 质量检测模块根据监控规则发送质量检测指令到检测设备。
- 检测设备执行质量检测。
-
模型监控:
- 模型监控模块将模型运行情况发送给监控人员。
请根据你的具体需求和系统设计,调整上述框架。如果你需要更详细的图示或具体的图例,可以使用专业的绘图工具(如Visio、Lucidchart等)来绘制。
Hi, Spring fans! How’re things, my friends? Can you believe we’re already nearly at the end of January? I have been knee-deep in code and coffee for these last several days and I’m running late for a meeting so, without further ado, let’s get to it!
Creating Docker images with Spring Boot 2.3.0.M1
Spring Cloud Data Flow 2.4.0 M1 Released
Spring Cloud Data Flow 2.3.1 Released
In last week’s A Bootiful Podcast, I interview Neo4j’s mad scientist Michael Hunger on graphs, databases, and relationships
Spring Boot 2.3.0.M1 is now available
Spring Integration 5.3 Milestone 1 Available
Spring Tools 4.5.1 released
Want to run your own Azure Spring Cloud workshop? The team is constantly evolving their public workshop at https://github.com/microsoft/azure-spring-cloud-training
Improved Java support poured into Microsoft’s Visual Studio Code – will it be enough to tempt developers? • The Register
First look at Cloud Native Buildpacks support in Spring Boot 2.3 Milestone 1
Juan Medina has a nice post on optimizing building optimized Spring-based Kubernetes services
IntelliJ IDEA 2020.1 EAP: Java 14, improvements for Git and UI, and much more | IntelliJ IDEA Blog
This seems like an interesting video for getting started with Spring Webflux
Learning Spring Boot: First as a Student, Then as a Teacher
One of the technologies that underpins Spring Boot 2.3’s new image building support is Cloud Native Buildpacks, about whose 2020 Roadmap you can learn more in this post on Medium
Ah, the familiar singleton. I tend to take it for granted, but it’s always worth introducing if you don’t have any exposure to it. Here’s a nice article from this last week that reuses some diagrams from the original Interface 21 training (the company before SpringSource which then got acquired by VMWare, which then spun out to form Pivotal, which is now again a recently accquired part of VMWare..)
Richard Seroter has a very nice article introducing the new replicated quorum queues in RabbitMQ