二分查找(折半查找)是一种高效的查找算法,它的工作原理是每次取中间元素与目标值比较,如果目标值大于中间元素

二分查找(折半查找)是一种高效的查找算法,它的工作原理是每次取中间元素与目标值比较,如果目标值大于中间元素,则在中间元素右侧继续查找;如果目标值小于中间元素,则在左侧查找。这个过程会持续进行,直到找到目标值或者搜索范围缩小到零。这种查找方法的前提是线性表必须是顺序存储并且按照关键字(如升序或降序)进行了排序。

然而,二分查找并不适合频繁的插入或删除操作,因为这些操作会打乱已排序的顺序,可能导致查找效率降低。对于动态变化的线性表,如链表,更适合使用顺序查找,因为链表的插入和删除操作相对简单,不需要移动大量元素。而对于那些数据稳定且需要频繁查找的线性表,二分查找则是一个理想选择。
二分查找(折半查找)的工作原理如下:

  1. 开始定位:从有序序列的中间元素开始,假设我们有一个已排序的数组,比如 [1, 3, 5, 7, 9, 11, 13]

  2. 比较与分割:计算中间元素的索引,如 mid = (low + high) // 2,在这个例子中,初始 low = 0high = len(array) - 1。第一次查找时,mid = 3,中间元素是 5

  3. 判断目标:比较目标值 target 与中间元素 array[mid]。如果 target > array[mid],说明目标可能在右半部分,将 low = mid + 1;如果 target < array[mid],则目标可能在左半部分,将 high = mid - 1

  4. 递归或循环:重复上述步骤,直到找到目标元素或搜索区间 low 大于 high,表示目标不存在。

  5. 结束条件:当 lowhigh 相等时,array[low] 就是目标值,查找完成。

举个例子:

假设目标值是 `23`,查找过程如下:
- 第1次:low=0, high=6, mid=3, 5(中间)> 23,low=3
- 第2次:low=3, high=3, mid=3, 5(中间)= 23,找到了,结束查找。

因此,二分查找在第2次比较后就找到了目标 `23`。

二分查找法(Binary Search)主要适用于已排序的数组数据结构。这种算法利用数组元素的有序性质,通过不断将搜索区间缩小一半来定位目标元素。例如,在一个有序的整数数组{1,2,3,4,5}中查找特定值4,二分查找法可以在最多log2(n)步内完成,对于大型数据集,这显著提高了查找效率。其时间复杂度为O(log2 n),这意味着它在处理大规模数据时非常高效。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bol5261

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值