数据库基础概述
数据库是现代信息系统的核心组成部分,用于高效存储、管理和检索数据。以下从多个维度介绍数据库基础知识:
一、数据库基本概念
-
数据库(Database, DB)
按一定规则组织、存储的相关数据集合,具有结构化、可共享、冗余度低等特点。例如:电商平台的商品数据库、银行的客户信息数据库。 -
数据库管理系统(Database Management System, DBMS)
管理数据库的软件系统,负责数据的存储、查询、更新、安全控制等。常见DBMS包括:- 关系型数据库:MySQL、Oracle、SQL Server、PostgreSQL
- 非关系型数据库(NoSQL):MongoDB、Redis、Cassandra
-
数据库系统(Database System)
由数据库、DBMS、应用程序、用户及硬件环境组成的整体。
二、数据模型
数据模型定义了数据的组织方式,是数据库设计的核心。主要类型包括:
-
关系模型(Relational Model)
- 以表(关系) 为基本单位,表由行(记录)和列(字段)组成。
- 例:用户表(用户ID、姓名、年龄、邮箱)
- 关键概念:
- 主键(Primary Key):唯一标识表中每条记录的字段(如用户ID)。
- 外键(Foreign Key):关联其他表主键的字段,用于建立表间关系。
- 范式(Normalization):通过规则减少数据冗余,分为1NF、2NF、3NF等。
-
非关系模型
- 文档模型(如MongoDB):以JSON格式文档存储数据,灵活适应非结构化数据。
- 键值模型(如Redis):通过“键-值”对快速查询,适合缓存场景。
- 图模型(如Neo4j):用于存储节点和关系,适合社交网络、推荐系统。
三、关系型数据库核心操作——SQL语言
SQL(Structured Query Language)是操作关系型数据库的标准语言,主要功能包括:
-
数据定义语言(DDL)
- 创建、修改、删除数据库对象:
CREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(50), age INT );
- 创建、修改、删除数据库对象:
-
数据操作语言(DML)
- 增删改查数据:
INSERT INTO users VALUES (1, '张三', 25); -- 插入 UPDATE users SET age=26 WHERE name='张三'; -- 更新 DELETE FROM users WHERE age>60; -- 删除 SELECT * FROM users WHERE age>18; -- 查询
- 增删改查数据:
-
数据控制语言(DCL)
- 管理用户权限:
GRANT SELECT ON users TO 'user1'; -- 授予查询权限 REVOKE INSERT ON users FROM 'user1'; -- 收回插入权限
- 管理用户权限:
四、数据库设计流程
- 需求分析:明确业务需求,确定数据类型和关系。
- 概念设计:通过ER图(实体-关系图)描述数据实体及关联。
- 实体:如“学生”“课程”
- 关系:一对一(1:1)、一对多(1:N)、多对多(M:N)
- 逻辑设计:将ER图转换为关系模型,确定表结构和字段。
- 物理设计:选择DBMS,优化存储结构和索引。
- 实施与优化:创建数据库,测试性能并调整索引、查询语句等。
五、数据库索引与性能优化
-
索引(Index)
- 类似书籍目录,加快数据查询速度,本质是排序的数据结构。
- 常见类型:
- 主键索引:自动创建,唯一且非空。
- 唯一索引:确保字段值唯一。
- 组合索引:基于多个字段创建,遵循“最左前缀”原则。
- 注意:索引会增加写入成本,需按需创建。
-
性能优化方向
- 优化查询语句:避免全表扫描,使用覆盖索引、JOIN优化等。
- 数据库分库分表:当数据量过大时,按业务或规则拆分数据。
- 读写分离:主库写入、从库读取,减轻单库压力。
六、数据库事务与一致性
-
事务(Transaction)
- 一组不可分割的操作,具有ACID特性:
- 原子性(Atomicity):要么全执行,要么全回滚。
- 一致性(Consistency):事务前后数据状态合法。
- 隔离性(Isolation):多个事务互不干扰。
- 持久性(Durability):事务提交后数据永久保存。
- 一组不可分割的操作,具有ACID特性:
-
并发控制
- 多事务同时执行时可能出现脏读、不可重复读等问题,通过锁(共享锁、排他锁)和事务隔离级别解决。
- 隔离级别(从低到高):读未提交、读已提交、可重复读、串行化。
七、关系型与非关系型数据库对比
维度 | 关系型数据库 | 非关系型数据库(NoSQL) |
---|---|---|
数据结构 | 结构化表 | 非结构化(文档、键值、图) |
扩展性 | 垂直扩展(升级硬件) | 水平扩展(分布式集群) |
查询方式 | SQL语言 | 自定义API或特定查询语法 |
适用场景 | 事务强一致场景(金融、电商) | 高并发、海量非结构化数据(社交、日志) |
八、数据库安全与备份
-
安全措施
- 权限控制:用户分级(管理员、普通用户),限制操作范围。
- 加密:对敏感数据(密码、银行卡号)加密存储。
- 防止SQL注入:使用参数化查询(如PreparedStatement)。
-
备份与恢复
- 全量备份:定期复制整个数据库。
- 增量备份:只备份变更数据,节省空间。
- 日志备份:记录事务日志,用于故障时恢复到指定时间点。
总结
数据库基础涵盖数据模型、SQL操作、设计流程、性能优化等核心内容。关系型数据库以结构化存储和事务一致性为优势,而NoSQL则在灵活性和扩展性上表现突出。实际应用中需根据业务需求选择合适的数据库技术,并通过合理设计和优化确保数据高效管理。
数据库基础概述
数据库是现代信息系统的核心组成部分,用于高效存储、管理和检索数据。以下从多个维度介绍数据库基础知识:
一、数据库基本概念
-
数据库(Database, DB)
按一定规则组织、存储的相关数据集合,具有结构化、可共享、冗余度低等特点。例如:电商平台的商品数据库、银行的客户信息数据库。 -
数据库管理系统(Database Management System, DBMS)
管理数据库的软件系统,负责数据的存储、查询、更新、安全控制等。常见DBMS包括:- 关系型数据库:MySQL、Oracle、SQL Server、PostgreSQL
- 非关系型数据库(NoSQL):MongoDB、Redis、Cassandra
-
数据库系统(Database System)
由数据库、DBMS、应用程序、用户及硬件环境组成的整体。
二、数据模型
数据模型定义了数据的组织方式,是数据库设计的核心。主要类型包括:
-
关系模型(Relational Model)
- 以表(关系) 为基本单位,表由行(记录)和列(字段)组成。
- 例:用户表(用户ID、姓名、年龄、邮箱)
- 关键概念:
- 主键(Primary Key):唯一标识表中每条记录的字段(如用户ID)。
- 外键(Foreign Key):关联其他表主键的字段,用于建立表间关系。
- 范式(Normalization):通过规则减少数据冗余,分为1NF、2NF、3NF等。
-
非关系模型
- 文档模型(如MongoDB):以JSON格式文档存储数据,灵活适应非结构化数据。
- 键值模型(如Redis):通过“键-值”对快速查询,适合缓存场景。
- 图模型(如Neo4j):用于存储节点和关系,适合社交网络、推荐系统。
三、关系型数据库核心操作——SQL语言
SQL(Structured Query Language)是操作关系型数据库的标准语言,主要功能包括:
-
数据定义语言(DDL)
- 创建、修改、删除数据库对象:
CREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(50), age INT );
- 创建、修改、删除数据库对象:
-
数据操作语言(DML)
- 增删改查数据:
INSERT INTO users VALUES (1, '张三', 25); -- 插入 UPDATE users SET age=26 WHERE name='张三'; -- 更新 DELETE FROM users WHERE age>60; -- 删除 SELECT * FROM users WHERE age>18; -- 查询
- 增删改查数据:
-
数据控制语言(DCL)
- 管理用户权限:
GRANT SELECT ON users TO 'user1'; -- 授予查询权限 REVOKE INSERT ON users FROM 'user1'; -- 收回插入权限
- 管理用户权限:
四、数据库设计流程
- 需求分析:明确业务需求,确定数据类型和关系。
- 概念设计:通过ER图(实体-关系图)描述数据实体及关联。
- 实体:如“学生”“课程”
- 关系:一对一(1:1)、一对多(1:N)、多对多(M:N)
- 逻辑设计:将ER图转换为关系模型,确定表结构和字段。
- 物理设计:选择DBMS,优化存储结构和索引。
- 实施与优化:创建数据库,测试性能并调整索引、查询语句等。
五、数据库索引与性能优化
-
索引(Index)
- 类似书籍目录,加快数据查询速度,本质是排序的数据结构。
- 常见类型:
- 主键索引:自动创建,唯一且非空。
- 唯一索引:确保字段值唯一。
- 组合索引:基于多个字段创建,遵循“最左前缀”原则。
- 注意:索引会增加写入成本,需按需创建。
-
性能优化方向
- 优化查询语句:避免全表扫描,使用覆盖索引、JOIN优化等。
- 数据库分库分表:当数据量过大时,按业务或规则拆分数据。
- 读写分离:主库写入、从库读取,减轻单库压力。
六、数据库事务与一致性
-
事务(Transaction)
- 一组不可分割的操作,具有ACID特性:
- 原子性(Atomicity):要么全执行,要么全回滚。
- 一致性(Consistency):事务前后数据状态合法。
- 隔离性(Isolation):多个事务互不干扰。
- 持久性(Durability):事务提交后数据永久保存。
- 一组不可分割的操作,具有ACID特性:
-
并发控制
- 多事务同时执行时可能出现脏读、不可重复读等问题,通过锁(共享锁、排他锁)和事务隔离级别解决。
- 隔离级别(从低到高):读未提交、读已提交、可重复读、串行化。
七、关系型与非关系型数据库对比
维度 | 关系型数据库 | 非关系型数据库(NoSQL) |
---|---|---|
数据结构 | 结构化表 | 非结构化(文档、键值、图) |
扩展性 | 垂直扩展(升级硬件) | 水平扩展(分布式集群) |
查询方式 | SQL语言 | 自定义API或特定查询语法 |
适用场景 | 事务强一致场景(金融、电商) | 高并发、海量非结构化数据(社交、日志) |
八、数据库安全与备份
-
安全措施
- 权限控制:用户分级(管理员、普通用户),限制操作范围。
- 加密:对敏感数据(密码、银行卡号)加密存储。
- 防止SQL注入:使用参数化查询(如PreparedStatement)。
-
备份与恢复
- 全量备份:定期复制整个数据库。
- 增量备份:只备份变更数据,节省空间。
- 日志备份:记录事务日志,用于故障时恢复到指定时间点。
总结
数据库基础涵盖数据模型、SQL操作、设计流程、性能优化等核心内容。关系型数据库以结构化存储和事务一致性为优势,而NoSQL则在灵活性和扩展性上表现突出。实际应用中需根据业务需求选择合适的数据库技术,并通过合理设计和优化确保数据高效管理。
如果需要深入某一模块(如SQL实战、索引原理或NoSQL应用),可以进一步说明需求!