-
确定所需内存空间的大小:
- 地址编号从 (7000H) 到 (EFFFH)。
- 将十六进制地址转换为十进制:
[
7000H = 7 \times 16^3 + 0 \times 16^2 + 0 \times 16^1 + 0 \times 16^0 = 28672
]
[
EFFFH = 14 \times 16^3 + 15 \times 16^2 + 15 \times 16^1 + 15 \times 16^0 = 61439
] - 计算内存空间大小:
[
61439 - 28672 + 1 = 32768 \text{ 字节}
]
-
确定每片存储器芯片的容量:
- 存储容量为 (4K \times 8) 比特。
- 将 (4K) 转换为字节:
[
4K = 4 \times 1024 = 4096 \text{ 字节}
] - 每片芯片的容量为 (4096 \text{ 字节})。
-
计算所需芯片数量:
- 将所需内存空间大小除以每片芯片的容量:
[
\frac{32768}{4096} = 8
]
- 将所需内存空间大小除以每片芯片的容量:
-
结论:
- 最少需要 (8) 片存储器芯片。
(\boxed{8})
要解决这个问题,需要先计算出地址编号7000H至EFFFH的内存空间大小,然后确定需要多少片4K×8比特的存储器芯片。以下是详细步骤:
一、计算目标内存空间的大小
-
确定地址范围的起始和结束值
- 起始地址:7000H
- 结束地址:EFFFH
-
将十六进制地址转换为十进制
- 7000H的十进制计算:
(7 \times 16^3 + 0 \times 16^2 + 0 \times 16^1 + 0 \times 16^0 = 7 \times 4096 = 28672) - EFFFH的十进制计算:
(E \times 16^3 + F \times 16^2 + F \times 16^1 + F \times 16^0 = 14 \times 4096 + 15 \times 256 + 15 \times 16 + 15 = 57344 + 3840 + 240 + 15 = 61439)
- 7000H的十进制计算:
-
计算地址空间的总字节数
内存空间大小 = 结束地址 - 起始地址 + 1(包含两端地址)
(61439 - 28672 + 1 = 32768) 字节,即 (32KB)(因为 (1KB = 1024) 字节)。
二、计算单芯片的存储容量
- 芯片规格为 (4K \times 8) 比特:
- (4K = 4 \times 1024 = 4096) 字节(因为8比特=1字节),即单芯片容量为 (4KB)。
三、计算所需芯片数量
- 总需求容量:(32KB)
- 单芯片容量:(4KB)
- 芯片数量 = 总需求容量 / 单芯片容量 = (32KB / 4KB = 8) 片。
答案
最少需要 8 片。