DP 洛谷 P1025 数的划分

本文介绍了一种通过递归方式解决整数分拆问题的方法,该问题要求将一个整数n分为k个非空的部分,并统计所有不同的分拆方案数量。文章提供了详细的算法解析和C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序)

例如:n=7k=3,下面三种分法被认为是相同的。

115; 151; 511;

问有多少种不同的分法。

输入输出格式

输入格式:

nk(6<n<=2002<=k<=6)

输出格式:

一个整数,即不同的分法。

输入输出样例

输入样例#1 复制

7 3

输出样例#1 复制

4

说明

四种分法为:115;124;133;223;

题目分析:

其实这题相当于将n个球放进m个盒子,不允许有空盒

设f[i][j]是将数i分成j个部分。

两种情况:

1.    盒子里没有1个球情况:我们把n个球放进m个盒子时,先在每一个盒子放上一个球,则剩余n-m个球,即f[n-m][m]

2.    盒子里有1个球情况,把那个一个球的盒子先提出来,即f[n-1][m-1]

所以,递推:f[n][m]=f[n-m][m]+f[n-1][m-1]

公式:f[i][j]=f[i-j][j]+f[i-1][j-1];

边界条件:f[0][0]=1;

代码实现:

#include <bits/stdc++.h>
using namespace std;
 int n,i,m,j;
 int f[202][202];
int main()
{
    cin>>n>>m;
    memset(f,0,sizeof(f));
    f[0][0]=1;                 //很重要的初始化
    for(i=1;i<=n;i++)      //相当于枚举n个1
        {
         for(j=1;j<=m;j++)   //枚举所分段数
         if(i-j>=0)    f[i][j]=f[i-j][j]+f[i-1][j-1];
        }
        cout<<f[n][m];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值