CF253D Table with Letters - 2 优美枚举

本文介绍了一个编程挑战,任务是计算给定的n*m大小的英语字母矩阵中,满足特定条件的子矩阵数量。具体条件包括子矩阵四个角的字母必须相同,并且包含的'a'字母数量不超过k。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

Vasya has recently started to learn English. Now he needs to remember how to write English letters. He isn't sure about some of them, so he decided to train a little.

He found a sheet of squared paper and began writing arbitrary English letters there. In the end Vasya wrote nn lines containing mm characters each. Thus, he got a rectangular n×mn×m table, each cell of the table contained some English letter. Let's number the table rows from top to bottom with integers from 1 to nn , and columns — from left to right with integers from 1 to mm .

After that Vasya looked at the resulting rectangular table and wondered, how many subtables are there, that matches both following conditions:

  • the subtable contains at most kk cells with "a" letter;
  • all letters, located in all four corner cells of the subtable, are equal.

Formally, a subtable's definition is as follows. It is defined by four integers x_{1},y_{1},x_{2},y_{2}x1​,y1​,x2​,y2​ such that 1<=x_{1}<x_{2}<=n , 1<=y_{1}<y_{2}<=m . Then the subtable contains all such cells (x,y)(x,y) ( xx is the row number, yy is the column number), for which the following inequality holds x_{1}<=x<=x_{2},y_{1}<=y<=y_{2}x1​<=x<=x2​,y1​<=y<=y2​ . The corner cells of the table are cells (x_{1},y_{1})(x1​,y1​) , (x_{1},y_{2})(x1​,y2​) , (x_{2},y_{1})(x2​,y1​) , (x_{2},y_{2})(x2​,y2​) .

Vasya is already too tired after he's been writing letters to a piece of paper. That's why he asks you to count the value he is interested in.

输入格式

The first line contains three integers n,m,kn,m,k (2<=n,m<=400; 0<=k<=n·m) .

Next nn lines contain mm characters each — the given table. Each character of the table is a lowercase English letter.

输出格式

Print a single integer — the number of required subtables.

输入输出样例

输入 #1复制

3 4 4
aabb
baab
baab

输出 #1复制

2

输入 #2复制

4 5 1
ababa
ccaca
ccacb
cbabc

输出 #2复制

1

说明/提示

There are two suitable subtables in the first sample: the first one's upper left corner is cell (2,2)(2,2) and lower right corner is cell (3,3)(3,3) , the second one's upper left corner is cell (2,1)(2,1) and lower right corner is cell (3,4)(3,4) .


题意:

给你n*m的矩阵,统计满足一个矩阵四个角的字母相同,且满足a的个数<=k的子矩阵个数。

分析:

神级的优化枚举,固定枚举上行i和下行j,枚举左列和右列需要一定的技巧,我们依旧枚举从1到n枚举左列l,右列r从1开始,寻找可以满足的子矩阵,如果符合则就用num数组记录下来,如果不满足则r不变,l往下继续,注意要当前列消除num。

 

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e5+10;
char a[500][500];
int sum[500][500];//sum[i][j]代表 宽为i 长为j的矩阵中a的数量
int main()
{
    //freopen("input.txt", "r", stdin);
    //freopen("output.txt", "w", stdout);
    int n,m,k;
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1; i<=n; i++)
        scanf("%s",a[i]+1);
	
    memset(sum,0,sizeof(sum));
    for(int i=1; i<=n; i++)
        for(int j=1; j<=m; j++)
        {
            sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
            if(a[i][j]=='a')
                sum[i][j]++;
        }
    ll ans=0;
    int num[300];//选取矩阵中各个字母的出现的对数
    for(int i=1; i<=n; i++)
    {
        for(int j=i+1; j<=n; j++) //枚举矩阵的上边i和下边j
        {
            int r=1;//代表矩阵右边
            memset(num,0,sizeof(num));
            for(int l=1; l<=m; l++) //矩阵左边
            {
                if(a[i][l]!=a[j][l])
                    continue;//不满足矩形四个点相同
                num[a[i][l]]--;
                while(r<=m&&sum[j][r]-sum[i-1][r]-sum[j][l-1]+sum[i-1][l-1]<=k)
                {
                    if(a[i][r]==a[j][r])
                        num[a[i][r]]++;
                    r++;//矩形满足a个数小于kk的要求,矩阵右边增大,直到不满足,那么增大左边k++
                }
                if(num[a[i][l]]>0)
                    ans+=num[a[i][l]];//因为矩形左边固定,看右边满足四个点相同条件下有多少个这样的矩形
            }
        }
    }
    printf("%lld\n",ans);

}
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=505;
int a[N][N];
char mp[N][N];
int num[400],sum[N][N];
int n,m,k; 

int get(int x1, int y1, int x2, int y2)
{
    return sum[x1][y1] - sum[x1][y2 - 1] - sum[x2 - 1][y1] + sum[x2 - 1][y2 - 1];
}
int init()
{
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= m; j++)
        {
            sum[i][j] = sum[i][j-1] + sum[i-1][j] - sum[i-1][j-1] + a[i][j];
        }
    }
}
int main()
{
    freopen("input.txt","r",stdin);
    freopen("output.txt","w",stdout);

    scanf("%d%d%d",&n,&m,&k);
    for(int i=1; i<=n; i++)
    {
        scanf("%s",mp[i]+1);
        for(int j=1; j<=m; j++)
        {
            if(mp[i][j]=='a')
                a[i][j]=1;
        }
    }

    init();
    LL ans=0;

    for(int i=1; i<=n; i++)
    {
        for(int j=i+1; j<=n; j++)
        {
            int r=1;
            
            memset(num,0,sizeof(num));
            for(int l=1; l<=m; l++)
            {
                if(mp[i][l]!=mp[j][l])
                {
                     continue;
                }
                 num[mp[i][l]]--;
                while(r<=m&&get(j,r,i,l)<=k)
                {
                    if(mp[i][r]==mp[j][r])
                    {
                        num[mp[i][r]]++;
                    }
                    r++;
                }
                
                if(num[mp[i][l]]>0)
                	ans+=num[mp[i][l]];
            }
        }
    }
    printf("%lld",ans);
    //cout<<ans<<endl;

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值