Train Problem I
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 48177 Accepted Submission(s): 18184
Problem Description
As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of student want to get back to school by train(because the trains in the Ignatius Train Station is the fastest all over the world ^v^). But here comes a problem, there is only one railway where all the trains stop. So all the trains come in from one side and get out from the other side. For this problem, if train A gets into the railway first, and then train B gets into the railway before train A leaves, train A can't leave until train B leaves. The pictures below figure out the problem. Now the problem for you is, there are at most 9 trains in the station, all the trains has an ID(numbered from 1 to n), the trains get into the railway in an order O1, your task is to determine whether the trains can get out in an order O2.
Input
The input contains several test cases. Each test case consists of an integer, the number of trains, and two strings, the order of the trains come in:O1, and the order of the trains leave:O2. The input is terminated by the end of file. More details in the Sample Input.
Output
The output contains a string "No." if you can't exchange O2 to O1, or you should output a line contains "Yes.", and then output your way in exchanging the order(you should output "in" for a train getting into the railway, and "out" for a train getting out of the railway). Print a line contains "FINISH" after each test case. More details in the Sample Output.
Sample Input
3 123 321
3 123 312
Sample Output
Yes.
in
in
in
out
out
out
FINISH
No.
FINISH
Hint
Hint
For the first Sample Input, we let train 1 get in, then train 2 and train 3.
So now train 3 is at the top of the railway, so train 3 can leave first, then train 2 and train 1.
In the second Sample input, we should let train 3 leave first, so we have to let train 1 get in, then train 2 and train 3.
Now we can let train 3 leave.
But after that we can't let train 1 leave before train 2, because train 2 is at the top of the railway at the moment.
So we output "No.".
Author
Ignatius.L
Recommend
We have carefully selected several similar problems for you: 1026 1023 1004 1020 1032
算法分析:
题意:
给你n个数,n<=9,两个序列a和b,一个栈,问b是否是a的出栈顺序,不是输出”NO”,是输出入栈和出栈步骤
例子:
1234 2314
可以进1 进2 出2 进3 出3 出1 进4 出4
分析:
来自:https://blog.csdn.net/u013480600/article/details/19210519
首先如果出栈序列可行,那么必定存在唯一的可行出栈方式(想想是不是)。我们只需要一步步尝试出栈和入栈操作是否满足当前的出栈序列中的元素顺序即可(每步的尝试不是 出栈操作 就是 入栈操作 其实很简单了,且只有出栈不可行的时候,我们才去入栈)。
我们只要用两个指针i和j,指向当前需要处理的入栈和出栈的那个字符即可。
先看如果我们把栈S中的元素出栈,如果S出栈的元素正好是j所指的元素,那么就出栈且j++处理下一个i和j对即可。
如果出栈不可行,那么我们就把i所指元素入栈即可。
注意出栈和入栈需要满足下面条件:
出栈:栈S不能为空 且 j不能超过出栈序列的最后一个元素 且 S.top() == b【j】所指元素
入栈:i不能超过入栈序列的最后一个元素
代码实现:
#include <bits\stdc++.h>
using namespace std;
#define N 1100
typedef long long ll;
int n;
string a,b;
vector<string>res;
bool ju()
{
int i=0,j=0;
stack<int>s;
while(i<n||j<n)
{
if(!s.empty()&&s.top()==b[j]&&j<n)//出栈
{
s.pop();
res.push_back("out");
j++;
}
else ///出栈
{
if(i==n)
{
return 0;
}
res.push_back("in");
s.push(a[i]);
i++;
}
}
return 1;
}
int main()
{
while(scanf("%d",&n)!=-1)
{
res.clear();
cin>>a>>b;
if(!ju())
cout<<"No."<<endl;
else
{
cout<<"Yes."<<endl;
for(int i=0;i<res.size();i++)
cout<<res[i]<<endl;
}
cout<<"FINISH"<<endl;
}
return 0;
}