lines
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1994 Accepted Submission(s): 869
Problem Description
John has several lines. The lines are covered on the X axis. Let A is a point which is covered by the most lines. John wants to know how many lines cover A.
Input
The first line contains a single integer T(1≤T≤100)(the data for N>100 less than 11 cases),indicating the number of test cases.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.
Output
For each case, output an integer means how many lines cover A.
Sample Input
2 5 1 2 2 2 2 4 3 4 5 1000 5 1 1 2 2 3 3 4 4 5 5
Sample Output
3 1
Source
Recommend
heyang | We have carefully selected several similar problems for you: 6460 6459 6458 6457 6456
题意:
n 条线段,每条线段用两个整数描述,对于第 i 条线段:xi,yi 表示该条线段的左端点和右端点。设 A 表示最多线段覆盖的点。现在需要求的是 A 被多少条线段覆盖。
分析:
方法1:
首先,介绍一种区间覆盖点数的方法,我们对于区间【1,n】都要对应一个val,初始为0,假设【l,r】被覆盖,那么我们将l对应的val+1,r+1对应的val-1,计算哪一个点被覆盖了多少次,我们统计该点的前缀和就可以(画图一目了然)
但是,本题数据范围过大,很简单,对起离散化就ok。
方法2:
树状数组+离散化
上题的思路前缀和嘛,树状数组快一点,但这题暴力也能过
方法3:
离散化+线段树:区间查询+区间增值
但没必要,更慢了。
普通方法
#include<stdio.h>
#include<string>
#include<string.h>
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=100000+5;//最大元素个数
struct node1
{
int x, y;
}a1[N];
int b[N*2];
int val[N*2];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
memset(val,0,sizeof(val));
int cnt=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a1[i].x,&a1[i].y);
b[cnt++]=a1[i].x;
b[cnt++]=a1[i].y;
}
sort(b,b+2*n);
int len=unique(b,b+2*n)-b;
for(int i=1;i<=n;i++)
{
int pos1=lower_bound(b,b+len,a1[i].x)-b+1;
int pos2=lower_bound(b,b+len,a1[i].y)-b+1;
val[pos1]++;
val[pos2+1]--;
}
int maxx=0;
int summ=0;
for(int i=1;i<=len;i++)
{
summ+=val[i];
maxx=max(summ,maxx);
}
cout<<maxx<<endl;
}
return 0;
}
树状数组代码
#include<stdio.h>
#include<string>
#include<string.h>
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=100000+5;//最大元素个数
int n;//元素个数
int c[N*2];//c[i]==A[i]+A[i-1]+...+A[i-lowbit(i)+1]
//返回i的二进制最右边1的值
int lowbit(int i)
{
return i&(-i);
}
//返回A[1]+...A[i]的和
int sum(int x){
int sum = 0;
while(x){
sum += c[x];
x -= lowbit(x);
}
return sum;
}
//令A[i] += val
void add(int x, int val){
while(x <= N){
c[x] += val;
x += lowbit(x);
}
}
struct node1
{
int x, y;
}a1[N];
int b[N*2];
int val[N*2];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
memset(c,0,sizeof(c));
memset(val,0,sizeof(val));
int cnt=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a1[i].x,&a1[i].y);
b[cnt++]=a1[i].x;
b[cnt++]=a1[i].y;
}
sort(b,b+2*n);
int len=unique(b,b+2*n)-b;
for(int i=1;i<=n;i++)
{
int pos1=lower_bound(b,b+len,a1[i].x)-b+1;
int pos2=lower_bound(b,b+len,a1[i].y)-b+1;
// cout<<a1[i].x<<" "<<pos1<<endl;
add(pos1,1);
add(pos2+1,-1);
}
int maxx=0;
for(int i=1;i<=len;i++)
{
maxx=max(sum(i),maxx);
}
cout<<maxx<<endl;
}
return 0;
}
线段树代码
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std;
#define lson i<<1
#define rson i<<1|1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define ll long long
#define N 100005
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
int ans_sum,ans_max,ans_min;
struct node
{
int l,r;
int sum;
int add;
} a[N<<2];
void pushdown(int i)//标记下传
{
a[lson].add+=a[i].add;///给左子节点打上延迟标记
a[rson].add+=a[i].add;///给右子节点打上延迟标记
a[lson].sum+=a[i].add*(a[lson].r-a[lson].l+1); ///更新左子节点消息
a[rson].sum+=a[i].add*(a[rson].r-a[rson].l+1); ///更新右子节点消息
a[i].add = 0; ///清除标记
}
void pushup(int i)
{
a[i].sum=a[lson].sum+a[rson].sum;
}
//建立线段树
void build(int l,int r,int i)
{
a[i].l = l;
a[i].r = r;
a[i].add = 0;
if(l == r)
{
a[i].sum = 0;
return;
}
int mid = (l+r)>>1;
build(LS);
build(RS);
pushup(i);
}
//a[l,r]+=val
void add_data(int l,int r,int i,int val)
{
if(a[i].l>=l&&a[i].r<=r)
{
a[i].sum += val*(a[i].r-a[i].l+1);
a[i].add += val;
return;
}
pushdown(i);//标记下传
int mid = (a[i].l+a[i].r)>>1;
if(l<=mid) add_data(l,r,lson,val);
if(r>mid) add_data(l,r,rson,val);
pushup(i);
}
void query(int l,int r,int i)
{
if(l <= a[i].l && a[i].r <= r)
{
ans_sum += a[i].sum;
return ;
}
pushdown(i);
int mid = (a[i].l+a[i].r)>>1;
if(l<=mid) query(l,r,lson);
if(r>mid) query(l,r,rson);
pushup(i);
}
struct node1
{
int x, y;
}a1[N];
int b[N*2];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
int cnt=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a1[i].x,&a1[i].y);
b[cnt++]=a1[i].x;
b[cnt++]=a1[i].y;
}
sort(b,b+2*n);
int len=unique(b,b+2*n)-b;
build(1,len,1);
for(int i=1;i<=n;i++)
{
int pos1=lower_bound(b,b+len,a1[i].x)-b+1;
int pos2=lower_bound(b,b+len,a1[i].y)-b+1;
// cout<<a1[i].x<<" "<<pos1<<endl;
add_data(pos1,pos2,1,1);
}
int maxx=0;
for(int i=1;i<=len;i++)
{
ans_sum=0;
query(i,i,1);
maxx=max(ans_sum,maxx);
}
cout<<maxx<<endl;
}
return 0;
}