HDU 3062 Party(2-SAT简单题)

本文探讨了在有限条件下,如何解决夫妻聚会中的人际矛盾问题。通过建立2-SAT模型,采用深度优先搜索算法,判断是否存在一种安排使得每对夫妻中恰好一人出席且不产生矛盾,提供了一种有效解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Party

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8528    Accepted Submission(s): 2739


 

Problem Description

有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席。在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时出现在聚会上的。有没有可能会有n 个人同时列席?

 

 

Input

n: 表示有n对夫妻被邀请 (n<= 1000)
m: 表示有m 对矛盾关系 ( m < (n - 1) * (n -1))

在接下来的m行中,每行会有4个数字,分别是 A1,A2,C1,C2 
A1,A2分别表示是夫妻的编号 
C1,C2 表示是妻子还是丈夫 ,0表示妻子 ,1是丈夫
夫妻编号从 0 到 n -1 

 

 

Output

如果存在一种情况 则输出YES 
否则输出 NO 

 

 

Sample Input

 

2 1 0 1 1 1

 

 

Sample Output

 

YES

 

 

Source

2009 Multi-University Training Contest 16 - Host by NIT

 

 

Recommend

lcy

 分析:

每一个夫妻必须出一个,所以这个就可以看成两种选择,2*a:妻子,2*a+1。

题目条件可以推出:

 

第a对夫妻的妻子与第b对夫妻的丈夫有矛盾的话

a*2->b*2

b*2+1->a*2+1

#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=10000+10;
struct TwoSAT
{
    int n;//原始图的节点数(未翻倍)
    vector<int> G[maxn*2];//G[i]==j表示如果mark[i]=true,那么mark[j]也要=true
    bool mark[maxn*2];//标记
    int S[maxn*2],c;//S和c用来记录一次dfs遍历的所有节点编号
 
    void init(int n)
    {
        this->n=n;
        for(int i=0;i<2*n;i++) G[i].clear();
        memset(mark,0,sizeof(mark));
    }
 
    //加入(x,xval)或(y,yval)条件
    //xval=0表示假,yval=1表示真
    void add_clause(int x,int xval,int y,int yval)
    {
        x=x*2+xval;
        y=y*2+yval;
        G[x].push_back(y);
       // G[y^1].push_back(x);
    }
 
    //从x执行dfs遍历,途径的所有点都标记
    //如果不能标记,那么返回false
    bool dfs(int x)
    {
        if(mark[x^1]) return false;//这两句的位置不能调换
        if(mark[x]) return true;
        mark[x]=true;
        S[c++]=x;
        for(int i=0;i<G[x].size();i++)
            if(!dfs(G[x][i])) return false;
        return true;
    }
 
    //判断当前2-SAT问题是否有解
    bool solve()
    {
        for(int i=0;i<2*n;i+=2)
        if(!mark[i] && !mark[i+1])
        {
            c=0;
            if(!dfs(i))
            {
                while(c>0) mark[S[--c]]=false;
                if(!dfs(i+1)) return false;
            }
        }
        return true;
    }
}TS;
int main()
{
	 int n,m;
	 int a,b,c,d;
	 char op[10];
	 while(scanf("%d%d",&n,&m)!=-1)
	{
		TS.init(n);
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d%d%d",&a,&b,&c,&d);
			TS.add_clause(a,c,b,d^1);
			TS.add_clause(b,d,a,c^1);
		}
		
    if(TS.solve()) printf("YES\n");
    else printf("NO\n");
	}
	 return 0;
	 
	  
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值