题意:
有n个人参加竞选,共有m条民意调查结果:
民意调查问题编码的已接受答案
如果i和j中至少有一个当选,我会很高兴。 + i + j
如果i和j中至少有一个没有当选,我会很高兴。 -i -j
如果我当选或j未被选举或两件事都发生,我会很高兴。 + i -j
如果我没有当选或j当选或两件事都发生,我会很高兴。 -i + j是否存在全部选民都满意的方案。
分析:
2——sat的经典例题,
对民意调查表的分析:
设i为当选,i'为落选。
+i +j
i落选,则j一定当选,i'->j
j落选,则i一定当选。j'->i
-i -j
i当选,则j一定落选,i->j'
j当选,则i一定落选。j->i'
+i -j
i不当选,则j一定落选,i'->j'
j当选,则i一定当选。j->i
-i +j
i当选,则j一定当选,i->j
j落选,则i一定落选 。j'->i'
其实仔细分析就是或的性质,但是比赛的时候肯定一条条写,下面代码是整合的
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=10000+10;
struct TwoSAT
{
int n;//原始图的节点数(未翻倍)
vector<int> G[maxn*2];//G[i]==j表示如果mark[i]=true,那么mark[j]也要=true
bool mark[maxn*2];//标记
int S[maxn*2],c;//S和c用来记录一次dfs遍历的所有节点编号
void init(int n)
{
this->n=n;
for(int i=0;i<2*n;i++) G[i].clear();
memset(mark,0,sizeof(mark));
}
//加入(x,xval)或(y,yval)条件
//xval=0表示假,yval=1表示真
void add_clause(int x,int xval,int y,int yval)
{
x=x*2+xval;
y=y*2+yval;
G[x].push_back(y);
// G[y^1].push_back(x);
}
//从x执行dfs遍历,途径的所有点都标记
//如果不能标记,那么返回false
bool dfs(int x)
{
if(mark[x^1]) return false;//这两句的位置不能调换
if(mark[x]) return true;
mark[x]=true;
S[c++]=x;
for(int i=0;i<G[x].size();i++)
if(!dfs(G[x][i])) return false;
return true;
}
//判断当前2-SAT问题是否有解
bool solve()
{
for(int i=0;i<2*n;i+=2)
if(!mark[i] && !mark[i+1])
{
c=0;
if(!dfs(i))
{
while(c>0) mark[S[--c]]=false;
if(!dfs(i+1)) return false;
}
}
return true;
}
}TS;
int main()
{
int n,m;
int a,b,c,d;
char op[10];
while(scanf("%d%d",&n,&m)!=-1)
{
TS.init(n);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
TS.add_clause(abs(a)-1,a<0?1:0,abs(b)-1,b>0?1:0);
TS.add_clause(abs(b)-1,b<0?1:0,abs(a)-1,a>0?1:0);
}
if(TS.solve()) printf("1\n");
else printf("0\n");
}
return 0;
}