2601 调皮的小Biu 后缀数组求最长公共子串

本文介绍了一种利用后缀数组求解两个字符串间最长公共子串的有效算法。通过将两个字符串连接并插入分隔符,构建新串后进行后缀排序,进而计算高度数组来找出最长公共子串的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2601 调皮的小Biu

  1. 1.0 秒
  2.  
  3. 131,072.0 KB
  4.  
  5. 10 分
  6.  
  7. 2级题

小Biu的期中考试刚刚结束,调皮的小Biu不喜欢学习,所以他考试中抄袭了小Piu的试卷。

考试过程中一共有n道题目,每道题目的标准答案为区间[1,5]中的一个正整数。

现在有小Piu和小Biu的答案序列a和b,现在老师想知道两个答案序列最长连续相等的子串的长度是多少。

比如一共有10道题,a序列为(1 1 2 1 2 1 2 1 1 5),b序列为(3 3 2 3 1 2 1 1 3 4),则最长相等的子串为(1,2,1,1),所以答案为4。

 收起

输入

第1行:一个正整数n,表示题目的个数。(1<=n<=100000)
第2行:n个正整数,第i个正整数表示a[i]。(1<=a[i]<=5)
第3行:n个正整数,第i个正整数表示b[i]。(1<=b[i]<=5)

输出

输出一个正整数表示两个序列的最长相等子串的长度。

输入样例

10
1 1 2 1 2 1 2 1 1 5
3 3 2 3 1 2 1 1 3 4

输出样例

4

 

    罗穗骞《后缀数组——处理字符串的有力工具》例题.

        首先如果这两个长字符串存在某个最长的公共子串,那么该子串一定分别是这两个串的后缀的前缀.所以我们将两个串中间加一个符号’$’然后连接起来形成一个新串(还要添尾0).然后我们求这个新串的height数组值,我们从sa[1]到新串长sa[n-1]依次扫描字典序相邻的两个后缀的LCP,如果这两个后缀分别属于之前不同的两个串,那么他们的LCP值就可能是他们最长连续公共子串的长度。否则的话就不是。

        为什么上面的做法对呢?想想假设串a和串b存在最长字串c(长len),那么c是a串的后缀i的前缀,c是b串的后缀j的前缀。所以在新串中按字典序排序的height数组,后缀i和后缀j一定是相邻的。假设后缀i与后缀j之间还有后缀k,无论后缀k属于a串还是b串,k肯定与i与j的公共部分要>=len(想想是不是这样?)

        另外如果我们连接两个原始串,中间不加’$’符号的话,会出现什么情况呢?比如串aaa和串aaaaaaa,那么就会算的他们的后缀LCP可能为6了,这明显是错的.所以要分隔符’$’.
 

#include <bits/stdc++.h>
using namespace std;
const int maxn=300000+1000;
int len1,len2;
int num[maxn];
struct SuffixArray
{
    char s[maxn];
    ///_rank[i] 第i个后缀的排名; SA[i] 排名为i的后缀位置; Height[i] 排名为i的后缀与排名为(i-1)的后缀的LCP
    int sa[maxn],_rank[maxn],height[maxn];
    ///c[i] 基数排序辅助数组
    int t1[maxn],t2[maxn],c[maxn],n;
    int dmin[maxn][21];
    
    void init()
    {
    	memset(height,0,sizeof(height));
        memset(_rank,0,sizeof(_rank));
        memset(sa,0,sizeof(sa));
        memset(c,0,sizeof(c));
        memset(t1,0,sizeof(t1));
        memset(t2,0,sizeof(t2));
        memset(dmin,0,sizeof(dmin));
    }

    void build_sa(int m)  ///m大于s[]数组出现的任意字符的int值
    {
        /// x[i]是第i个元素的第一关键字  y[i]表示第二关键字排名为i的数,第一关键字的位置
        int i,p,*x=t1,*y=t2;
        x[n]=y[n]=-1;
        for(i=0; i<m; i++)
            c[i]=0;
        for(i=0; i<n; i++)
            c[x[i]=s[i]]++;
        for(i=1; i<m; i++)
            c[i]+=c[i-1];
        for(i=n-1; i>=0; i--)
            sa[--c[x[i]]]=i;
        for(int k=1; k<=n; k<<=1)
        {
            p=0;
            for(i=n-k; i<n; i++)
                y[p++]=i;
            for(i=0; i<n; i++)
                if(sa[i]>=k)
                    y[p++]=sa[i]-k;
            for(i=0; i<m; i++)
                c[i]=0;
            for(i=0; i<n; i++)
                c[x[i]]++;
            for(i=1; i<m; i++)
                c[i]+=c[i-1];
            for(i=n-1; i>=0; i--)
                sa[--c[x[y[i]]]]=y[i];
            swap(x,y);
            p=1;
            x[sa[0]]=0;
            for(i=1; i<n; i++)
            {
                if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])
                    x[sa[i]]=p-1;
                else
                    x[sa[i]]=p++;
            }
            if(p>=n)
                break;
            m=p;
        }
    }

    void build_height()//单个字符也行
    {
        int i,j,k=0,r;
        for(i=0; i<n; i++)
            _rank[sa[i]]=i;
        height[0]=0;
        for(i=0; i<n; i++)
        {
            if(k)
                k--;
            r=_rank[i];
            if(r==0)
                continue;
            j=sa[r-1];
            while(s[i+k]==s[j+k])
                k++;
            height[_rank[i]]=k;
        }
    }
    int LongestMessage() //最长公共子串
    {
        int ans=0;
        for(int i=2; i<n; i++)
        {
            int a1=sa[i-1],a2=sa[i];
            if(a1>a2)
                swap(a1,a2);
            if(a1>=0&&a1<=len1-1&&a2>=len1+1&&a2<=len1+len2)
                ans = max(ans,height[i]);
        }
        return ans;
    }


    void initMin()
    {

        for(int i=0; i<n; i++)
            dmin[i][0]=height[i];
        for(int j=1; (1<<j)<=n; j++)
            for(int i=0; i+(1<<j)-1<n; i++)
                dmin[i][j]=min(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]);
    }
    int RMQ(int L,int R)//取得范围最小值
    {
        int k=0;
        while((1<<(k+1))<=R-L+1)
            k++;
        return min(dmin[L][k], dmin[R-(1<<k)+1][k]);
    }
    int LCP(int i,int j)//求后缀i和j的LCP最长公共前缀
    {
         if(i==j) return n-i;
        int L=_rank[i],R=_rank[j];//求后缀i与后缀j的LCP
        
		//if(i==j) return n-sa[i];
        //int L=i,R=j;//直接求排名i与j后缀的LCP
        if(L>R)
            swap(L,R);
        L++;//注意这里
        return RMQ(L,R);
    }
    int num()//子串的个数
    {
        int ans=0;
        for(int i=1; i<n; i++)
            ans += n-1-sa[i]-height[i];
        return ans;
    }
   //确定子串[be,be+len-1]的在后缀排名区间[L,R]
    int get_LR(int be,int len,int &L,int &R)
    {
        int pos=_rank[be];
        int l=0,r=pos;
        while(l<r)
        {
            int mid=(l+r)>>1;
            if(RMQ(mid+1,pos)>=len)
                r=mid;
            else
                l=mid+1;
        }
        L=l;

        l=pos;
        r=n-1;
        while(l<r)
        {
            int mid=(l+r+1)>>1;
            if(RMQ(pos+1,mid)>=len)
                l=mid;
            else
                r=mid-1;

        }
        R=l;

    }
    //恰好出现w次子串的个数
    int num_w(int w)
    {
    	int ans=0;
    	for(int i=0; i+w-1<n; i++)
            ans+=max(0,LCP(i,i+w-1)-max(height[i],height[i+w]));
		return ans;
    }
    void out()
    {
        for(int i=0; i<n; i++)
        {
            cout<<sa[i]<<" ";
        }
        cout<<endl;
        for(int i=0; i<n; i++)
        {
            cout<<_rank[i]<<" ";
        }
        cout<<endl;
        for(int i=0; i<n; i++)
        {
            cout<<height[i]<<" ";
        }
        cout<<endl;
    }
} sa;
int main()
{
    scanf("%d",&len1);
    len2=len1;
    for(int i=0; i<len1; i++)
    {
        scanf("%d",&num[i]);
        sa.s[i]=(char)(num[i]+96);
    }

    sa.s[len1]='$';
    for(int i=0; i<len2; i++)
    {
        scanf("%d",&num[i]);
        sa.s[i+len1+1]=(char)(num[i]+96);
    }

    sa.n=len1+len2+1;
    sa.s[len1+len2+1]='\0';
    

    sa.build_sa(256);
    sa.build_height();
    printf("%d\n",sa.LongestMessage());
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值