自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(765)
  • 收藏
  • 关注

原创 Python有哪些杀手级超厉害框架或库或应用?

Pandas能做什么呢?它可以帮助你任意探索数据,对数据进行读取、导入、导出、连接、合并、分组、插入、拆分、透视、索引、切分、转换等,以及可视化展示、复杂统计、数据库交互、web爬取等,同时它还可以使用复杂的自定义函数处理数据,并与numpy、matplotlib、sklearn、pyspark、sklearn等众多科学计算库交互。上面大部分库我都用过,用的最多也最顺手的是Pandas,可以说这是一个生态上最完整、功能上最强大、体验上最便捷的数据分析库,称为编程界的Excel也不为过。

2025-08-01 14:12:19 349

原创 python+pandas是否能代替excel+vba?

总的来说,D-Tale是一款Pandas辅助工具,可以高效地进行探索性分析。比如说,你想简单探索下数据集的结构、描述统计结果、可视化图表等等,如果能绕开代码,直接通过GUI界面来操作,会更加方便。那样实现拖拉拽的图表制作,而且提供了很多图表类型,包括折线图、柱状图、直方图、饼图、热力图、三维图、词云图、地图等等。就可以完美实现上述功能,作为Pandas生态的辅助GUI工具,能读取DataFrame数据,供使用者进行探索分析。、命令行中打开,其功能包括筛选、排序、高亮、拼接、数据转换、描述统计、可视化等等。

2025-08-01 14:10:29 177

原创 一文搞懂Python文件读写

readlines方法和readline方法长得像,但功能不一样,前面说过readline方法只读取一行,readlines方法则是读取所有行,返回的是所有行组成的列表。很多童鞋困扰于读写文件的各种模式(如阅读、写入、追加等),以及搞不清open、read、readline、readlines、write等方法的使用。也就是说,你读取的txt文本,其中换行符会以'\n'形式出现,写入txt文本时,文本中的'\n'会变成换行指令。相反,在默认模式下写入文件时,文本中的'\n'会转换为换行符。

2025-07-31 10:03:17 570

原创 泣血整理,Jupyter Notebook最常用的五大配置技巧

在Jupyter上,可以使用python做数据处理、统计建模、可视化、机器学习、教学演示、网页抓取等各种各样的事情,只有你想不到,没有它做不到。说到Jupyter Notebook(以下简称Jupyter),想必很多人都不陌生,这是一款神奇的web应用,权且可以把它当作python超级笔记本,当然它还支持R、Julia、Scala、Js等几十种语言。经过这四个步骤,工作目录就修改好了,这时候不管你是通过快捷键还是命令行进入Jupyter Notebook,都能看到最新设置的目录,干净清爽。

2025-07-31 10:02:33 484

原创 机器学习中的泛化能力

高考试题一般是新题,谁也没做过,平时的刷题就是为了掌握试题的规律,能够举一反三、学以致用,这样面对新题时也能从容应对。这种规律的掌握便是泛化能力,有的同学很聪明,考上名校,很大程度上是该同学的泛化能力好。了训练数据的特性,过拟合模型在训练过程中产生的损失很低,但在预测新数据方面的表现却非常糟糕。学习的目的是学到隐含在数据背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该。由此可见,经训练样本训练的模型需要对新样本做出合适的预测,这是泛化能力的体现。能力,什么是泛化能力呢?

2025-07-30 11:28:07 720

原创 轻松识别图像,这款Python OCR库支持超过80种语言

检测部分使用了CRAFT算法,识别模型为CRNN,它由3个主要组件组成:特征提取,序列标记(LSTM)和解码(CTC)。这段代码有一段参数['ch_sim','en'],这是要识别的语言列表,因为路牌里有中文和英文,所以列表里添加了ch_sim(简体中文)、en(英文)。EasyOCR支持超过80种语言的识别,包括英语、中文(简繁)、阿拉伯文、日文等,并且该库在不断更新中,未来会支持更多的语言。细心观察便可发现,身边到处都是OCR的身影,文档扫描、车牌识别、证件识别、银行卡识别、票据识别等等。

2025-07-30 11:27:30 589

原创 SQL 怎么学?

问题的预设条件是没有任何基础,也就是说不知道SQL到底到能做什么。那么有必要给SQL一个定义:SQL是一种从关系型数据库生成操作和检索数据的语言,是与数据库进行数据交互的媒介,它能够轻巧的窥探大数据集,按照你想要的方式蹂躏数据。当然这一切的前提是,你能够编写自己的SQL语句。先给一个最直观的解释:DBMS为数据库管理系统用于定义数据结构的语句称为SQL方案语句,比如student...用于创建、操作、检索数据库中数据的语句称为SQL数据语句,比如 INSERTE INTO student...

2025-07-29 21:51:13 771

原创 保姆级教程,深度评测GLM-4.5模型,编程能力相当炸裂

GLM-4.5由于训练算法的创新,能在单模型中原生融合推理、编码、智能体能力的模型,这应该是行业第一个做到的,可以无缝切换用于复杂推理的思考模式,以及用于快速回答的非思考模式,而且它的Agent工具调用可靠性更高,这就使得GLM-4.5模型综合能力强于其他同类模型。/V3, Kimi-k2和一样,是擅长推理、编程的开源大模型,但GLM-4.5达到了开源SOTA的能力,SOTA意味着它是开源里技术先进、表现最好、性能最优的模型,以我对智谱AI的了解,这绝不是夸张的宣传噱头。模型性能取决于参数大小?

2025-07-29 21:44:46 492

原创 数据采集神器-亮数据,可以轻松解锁各种网站~

亮数据平台提供了强大的数据采集工具,比如Web Scraper IDE、亮数据浏览器、SERP API等,能够自动化地从网站上抓取所需数据,无需分析目标平台的接口,直接使用亮数据提供的方案即可安全稳定地获取数据。网络爬虫是一种常见的数据采集技术,与屏幕抓取不同,屏幕抓取只复制屏幕上显示的像素,网络爬虫提取的是底层的HTML代码,以及存储在数据库中的数据。你可以使用Python编写爬虫代码实现数据采集,也可以使用自动化爬虫工具,这些工具对爬虫代码进行了封装,你只需要配置下参数,就可以自动进行爬虫。

2025-07-28 18:51:44 1274

原创 推荐这3个自动化爬虫工具,非常强大!

网络爬虫是一种常见的数据采集技术,你可以从网页、 APP上抓取任何想要的公开数据,当然需要在合法前提下。与屏幕抓取不同,屏幕抓取只复制屏幕上显示的像素,网络爬虫提取的是底层的HTML代码,以及存储在数据库中的数据。一般使用抓包工具获取HTML,然后使用网页解析工具提取数据。你可以使用Python编写爬虫代码实现数据采集,也可以使用自动化爬虫工具,这些工具对爬虫代码进行了封装,你只需要配置下参数,就可以自动进行爬虫。这里推荐3款不错的自动化爬虫工具,八爪鱼、亮数据、Web Scraper。

2025-07-28 18:49:58 884

原创 国人学习编程比欧美难在哪?

如果你是英语母语,我相信会很好理解什么是class,因为这些关键词都是英文语境中常用的含义,但你看中文翻译的话,理解起来还是很难的,尤其像instance(实例)这种官方拗口的翻译。还有一点很重要的是,编程技术相关主流技术书籍、网站、论坛都是英文出版的,国人英文阅读能力多数很难无障碍地去阅读这些资料。,被翻译为“类”,初学者也很难理解,其实就是“种类”、“类别”的意思,用class关键词定义一个种类,这个种类有它的。有人说有翻译软件啊,其实那效率之低、理解之困难,如同文盲找个代读,搞技术的都会懂。

2025-07-27 20:16:50 281

原创 程序员如何用好 Cursor 工具?

这就是Cursor,非常的简单且强大, 我只是演示了核心功能,其他还有很好玩的部分等你去研究,比如批量代码替换、代码解释与学习、自动生成注释等,而且Cursor内置终端、集成Git、支持 VSCode 插件,几乎一个终端能完成编程所有事情。因为Cursor不仅分析当前文件,还能结合整个项目上下文,理解多文件代码逻辑。第一种是直接使用内置的deepseek-r1、deepseek v3模型,无需任何配置,下载安装好Cursor就可以使用,但需要购买Cursor的会员,还挺贵的,Pro版需要20刀每月。

2025-07-27 20:15:56 843

原创 应该怎么练习使用正则表达式?

中使用正则表达式,像Java、Go、Python、JavaScript等语言都支持正则表达式,且查找模式也都一致。用于在字符串中找到正则表达式所匹配的所有子串,并返回一个列表,如果没有找到匹配的,则返回空列表。强密码(以字母开头,必须包含大小写字母和数字的组合,不能使用特殊字符,长度在8-10之间)IP地址的长度为32位(共有2^32个IP地址),分为4段,每段8位,用十进制数字表示。手机号都为11位,且以1开头,第二位一般为3、5、6、7、8、9 ,剩下八位任意数字。第四位数字表示县(市)

2025-07-26 15:18:47 716

原创 Microsoft 365 Copilot 将如何颠覆 Office 用户的工作方式?

而数字化普及的今天,现在哪怕一个小超市,也可以通过Excel、Access来搭建自己的数据中心,做库存管理、商品管理、顾客分析,几乎能帮助到运营的每一个环节。但Copilot的出现直接把这种功能体验感拉满,它能自动提供公式、格式、分析方法的建议,你只需要按确认,就能帮你瞬间搞定。但现在的office只能说是一个毫无感情和智商的机器人,效率是提升了,但做什么、怎么做、做的更好,都需要人亲自来做。可怕的是,AI的知识储备和计算能力,能让它突破人脑的限制,做很多人做不了的事,人能做的就是promot了。

2025-07-26 15:17:37 278

原创 学习编程照着别人的代码敲进去有效率吗?

之前看过一个纪录片,深圳有一些人专门从事世界名画的复刻,也就是做高仿,但是画了几十年也只能默默无闻,勉强糊口。一个优秀的程序员,必然是经过大量刺激-反应的训练,而对于初学者来说,对着书本敲代码是这一过程的开始。所以说,在学编程的初期,尽情的去敲代码,反复模仿别人的项目,这对后期有很大的帮助。行为主义学习理论认为,学习是刺激和反应之间的联接,也就是说所有行为都是习得的。所以朋友,不要担心学编程敲别人的代码,这是踏入编程的第一步,非走不可。你应该担心的是,你是在有思想的模仿,还是在机械的复制,这两者完全不同。

2025-07-25 17:18:07 190

原创 python+pandas是否能代替excel+vba?

总的来说,D-Tale是一款Pandas辅助工具,可以高效地进行探索性分析。比如说,你想简单探索下数据集的结构、描述统计结果、可视化图表等等,如果能绕开代码,直接通过GUI界面来操作,会更加方便。那样实现拖拉拽的图表制作,而且提供了很多图表类型,包括折线图、柱状图、直方图、饼图、热力图、三维图、词云图、地图等等。就可以完美实现上述功能,作为Pandas生态的辅助GUI工具,能读取DataFrame数据,供使用者进行探索分析。、命令行中打开,其功能包括筛选、排序、高亮、拼接、数据转换、描述统计、可视化等等。

2025-07-25 17:17:30 364

原创 python如何理解map,reduce,filter?

是的python函数,初学者会较难理解,这里详细解释下。

2025-07-23 23:57:53 262

原创 如何最简单、通俗地理解Python的numpy库?

一言以蔽之,numpy是python中基于数组对象的科学计算库。

2025-07-23 23:57:19 1010

原创 如何自学SQL?

SQL应该算是投资回报最高的语言,不是说它比Java、C++更NB,而是SQL容易入门也容易找到工作,一般初级的数据分析或者ETL都把SQL作为面试的核心技能。另外,SQL也是众多岗位的基本功,开发需要、数据需要、测试需要、商业分析需要...总之,SQL是互联网领域的瑞士军刀。学习sql本身可能是枯燥的,不像游戏那样每过一个关卡就获得成就感,sql学习的前期尤其是语法阶段,需要记忆的东西比较多,比如说join、groupby、order by等函数。所以伙伴们学习的时候可以适当地给自己创造闯关打怪的场景。

2025-07-22 10:52:17 982

原创 你的编程能力什么时候开始有了质的飞跃?

写技术博客不光带来了代码能力的提升,还让我认识了很多技术大牛和各种行业资源,当然也获得了工作之外的收益。我在知乎写技术博客的过程就是这样,随着粉丝慢慢增多,我写文的动力也愈发的足,到现在粉丝涨到了十多万,也是意料之外。前公司是做新能源汽车大数据的,我的工作就是把海量的车辆运行数据进行处理,去解决车企精准营销、选址的问题,,比如地理围栏、地图可视化等,我还学习了。

2025-07-22 10:51:47 391

原创 自学了半个月python,感觉没用,怎么办?

我遇到过很多研究生之前是个编程小白,但论文要用到python去处理数据、做算法模型,他们熟悉Python的速度往往很快,看个把。要想有用,你得在场景中学Python,换言之就是用python去解决实际的问题,在这过程中去学习。就像普通人学了十几年数学,还是停留在公式、解题层面。我不推荐为了一个很遥远的目标,比如说找工作,然后每天死磕语法书。这样学了十天半个月,会发现那些语法对解决实际问题毫无帮助。学习编程是一个不断需要正反馈激励的过程。

2025-07-21 08:21:09 337

原创 新式爬虫利器!直接采集百万级复杂数据

这里的snapshot id先不用管,你发送数据请求后爬下来的数据就会临时存储到亮数据平台上,然后会生成一个snapshot id(用于下载数据),接着你可以通过snapshot id再提取你想要的数据,snapshot id是唯一的,不用担心数据丢失。Scraper APIs是亮数据专门为批量采集数据而开发的接口,支持上百个网站,200多个专门API采集器,例如Linkedin的职位、公司、人员数据采集器,Tiktok的商品、短视频数据采集器,当然这些数据都是公开可抓取的,不会涉及任何隐私安全问题。

2025-07-21 08:20:02 2164

原创 使用八爪鱼爬虫抓取汽车网站数据,分析舆情数据

但这次我们不用Python爬虫来采集数据,而用一个无代码爬虫工具-八爪鱼,因为我担心采集复杂的数据用Python代码可能太复杂,比较费时间,而八爪鱼工具可以几分钟就能完成设置,爬取相应的数据。的案例,使用requests、selenium等技术采集数据,这次尝试去采集小米SU7在微博、汽车之家上的舆论数据,分析下小米SU7的口碑到底怎么样,用户关心和吐槽的点有哪些。舆情分析的思路有四个方面,一是看小米SU7的卖点,二是看小米SU7的槽点,三是看用户最关心的问题和期待,四是看竞品有哪些。

2025-07-21 08:18:25 1758

原创 最受欢迎的5个 Vscode AI插件,收藏~

vscode插件非常多,我一般会看most popular排序,前50的很多是高频必备插件,像是Pylance、jupyter、docker、prettier、copilot、wsl等,堪称写代码神器,安装了绝对不会错。如果你是vscode小白用户,根据自己使用的语言,去选择most popular列表中的插件安装,会节省很多筛选时间。现在出现了各种AI生成代码插件,也非常的实用和有趣,绝对让写代码不枯燥,因为安装了这些插件,你可能压根不需要写代码了,下面举5个最受欢迎的Vscode AI插件。

2025-07-19 23:14:07 357

原创 利用query()与eval()优化pandas代码

利用pandas进行数据分析的过程,不仅仅是计算出结果那么简单,很多初学者喜欢在计算过程中创建一堆命名的中间变量,一方面使得代码读起来费劲,另一方面越多的不必要的中间变量意味着越高的内存占用,越多的计算资源消耗。因此很多时候为了提升整个数据分析工作流的以及代码的,需要配合一些pandas中的高级特性。本文就将带大家学习如何在pandas中化繁为简,利用query()和eval()来实现高效简洁的数据查询与运算。图1。

2025-07-19 23:13:02 580

原创 最受欢迎的5个 Vscode AI插件,收藏~

vscode插件非常多,我一般会看most popular排序,前50的很多是高频必备插件,像是Pylance、jupyter、docker、prettier、copilot、wsl等,堪称写代码神器,安装了绝对不会错。如果你是vscode小白用户,根据自己使用的语言,去选择most popular列表中的插件安装,会节省很多筛选时间。现在出现了各种AI生成代码插件,也非常的实用和有趣,绝对让写代码不枯燥,因为安装了这些插件,你可能压根不需要写代码了,下面举5个最受欢迎的Vscode AI插件。

2025-07-18 08:54:11 561

原创 这个Python可视化绘图工具真的好看,强烈推荐~

说到Python可视化库,你可能会很容易想到matplotlib,因为它是Python中最底层的绘图库,支持二维、三维、交互式等各种图表,而且通过元素化的模式能设计图表的任何细节,定制化程度非常高,很多可视化库都是基于matplotlib做二次开发的。如果你想更轻松的绘制可视化图表,推荐一定要试试Seaborn,它是在matplotlib的基础上进行了更高级的API封装,它一般用于统计分析,是数据科学领域的核心可视化库,类似于kaggle这种数据比赛大部分都用Seaborn。

2025-07-18 07:51:44 311

原创 7个最常用的数据分析方法和技巧,收藏!

例如: "客服响应太慢!这种方法不仅能将庞杂的数据集压缩为更易处理的维度,还能揭示数据底层隐藏的规律,尤其适用于量化抽象概念——例如财富水平、幸福感,或商业场景中的客户忠诚度、满意度等难以直接测量的指标。蒙特卡洛模拟的实施通常以数学模型为基础,模型中包含一个或多个目标输出变量(如利润、销售额),以及可能影响输出的输入变量(如营销预算、员工薪资)。基础型分析,将文本情绪归类为"正向"、"中性"或"负向"。情感分析作为文本分析的核心技术,可通过自动化手段解析文本中的情绪倾向,量化客户对品牌、产品或服务的态度。

2025-07-17 15:01:21 537

原创 Python常用的10大可视化库推荐~非常酷炫

Matplotlib的特点有足够的自定义空间让开发者去设计自己的图表,它把图表的每一个元素都拆解来,给到自定义函数、参数,让你去鼓捣。Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。用过 Python数据分析的小伙伴都知道,Python不光能高效处理数据,还能实现各种实用且酷炫的可视化,光是制作图表的第三方库就有几十种,而且各有千秋,下面来梳理梳理。

2025-07-17 15:00:35 641

原创 使用Python爬虫的重要原因和6大常用库推荐

而且亮数据有个很强大的功能:Scraper APIs,你可以理解成一种爬虫接口,它帮你绕开了IP限制、验证码、加密等问题,无需编写任何的反爬机制处理、动态网页处理代码,后续也无需任何维护,就可以“一键”获取Tiktok、Amazon、Linkedin、Github、Instagram等全球各大主流网站数据。爬虫其实就是请求http、解析网页、存储数据的过程,并非高深的技术,但凡是编程语言都能做,连Excel VBA都可以实现爬虫,但Python爬虫的使用频率最高、场景最广。

2025-07-16 14:51:44 1139

原创 Python包管理器 uv是否替代conda?

同样安装numpy、scipy,用conda安装的版本性能会比pip、uv安装的强悍很多,因为conda会集成MLK去优化相关计算库的性能,而且也会识别不同 CPU 架构(像是Intel/AMD/ARM)生成优化代码,使得numpy、scipy计算效率大幅提升。但uv是否能替代conda需要打个问号,因为conda在数据科学领域浸润的太深了,Anaconda、miniconda就是基于conda开发的Python发行版,专门用来用于科学计算和机器学习的开发。python的包管理器uv可以替代conda吗?

2025-07-16 14:48:03 406

原创 Origin、MATLAB、Python 用于科研作图,哪个最好?

matplotlib是Python中最底层的绘图库,它支持二维、三维、交互式等各种图表,而且通过元素化的模式能设计图表的任何细节,定制化程度非常高,很多可视化库都是基于matplotlib做二次开发的,或者是matplotlib的拓展,比如seaborn、pandas、mplfinance、DNA Features Viewer等,它们能应用于数据科学、金融量化、生物医学等各领域科研绘图。另外,matplotlib有一个示例集,里面有各式各样的专业图表,有的只需要换换数据就能为自己所用。

2025-07-15 17:52:57 455

原创 有没有一款全面的、容易上手的数据统计分析软件?

matplotlib是Python中最底层的绘图库,它支持二维、三维、交互式等各种图表,而且通过元素化的模式能设计图表的任何细节,定制化程度非常高,很多可视化库都是基于matplotlib做二次开发的,或者是matplotlib的拓展,比如seaborn、pandas、mplfinance、DNA Features Viewer等,它们能应用于数据科学、金融量化、生物医学等各领域科研绘图。另外如果你觉得matplotlib 绘图太麻烦,可以用seaborn,它是专门用于统计绘图的库,非常美观。

2025-07-15 17:49:24 441

原创 又一低代码爬虫工具,直接采集百万级复杂数据~

就我个人经验来看,数据爬虫是很费时间的技术,特别对于中小公司和个人,我曾经想研究下某音用户短视频的评论情感倾向,需要大概100万条级以上的数据,光是写代码有上千行,虽然是公开数据,但会面临各种反爬手段,最后脚本磨了两三天才能正常稳定的运行。

2025-07-14 11:17:29 2243

原创 我常用的3个数据采集软件,适合小白入手

亮数据平台提供了强大的数据采集工具,比如Web Scraper IDE、亮数据浏览器、SERP API等,能够自动化地从网站上抓取所需数据,无需分析目标平台的接口,直接使用亮数据提供的方案即可安全稳定地获取数据。与屏幕抓取不同,屏幕抓取只复制屏幕上显示的像素,网络爬虫提取的是底层的HTML代码,以及存储在数据库中的数据。你可以使用Python编写爬虫代码实现数据采集,也可以使用自动化爬虫工具,这些工具对爬虫代码进行了封装,你只需要配置下参数,就可以自动进行爬虫。

2025-07-14 11:16:43 1603

原创 Python GUI编程正在抛弃Tkinter库

相比Tkinter,PyQt就像是个六边形战士,它是基于大名鼎鼎的Qt框架搭的Python接口,拥有完备的控件、模块、事件处理机制、系统主题、多媒体资源、API接口,而且由于底层是基于C++实现的,速度和稳定性也是一流水平,可以说能搭建任何现代化的GUI应用,不限于大型商业软件、工业应用等等。PyQt也有它的劣势,因为功能强大,所以体积也很大,依赖库众多,PyQt作为第三方库需要额外安装,大概有三四百兆,如果你仅仅是开发的简单的GUI小应用,配置PyQt有点高射炮打蚊子,也得不偿失。

2025-07-14 00:18:16 806

原创 在 pandas 中如何 实现 sql 查询中 case when then end 的功能?

举个例子,一张考试成绩的表scores,有语文和数学的得分,现在给考生综合打分,两门都在90以上打A,都在80-90之间打B,其他则打C。apply的应用场景其实很多,远比你想象的多得多,比如一张学生成绩信息的表,它可以给每位学生通过deepseek制定个性化的提升建议。逻辑也很简单,判断函数实现多列的判断条件,apply将该判断函数应用到数据集上,就能实现类似sql case when的功能。除了这两种,其实pandas还有不少能实现的途径,但没必要尝试,因为这两种相对通用便捷,且符合python哲学。

2025-07-13 13:01:50 356

原创 说实话,统计分析用Python这5个第三方库就够了

matplotlib是Python中最底层的绘图库,它支持二维、三维、交互式等各种图表,而且通过元素化的模式能设计图表的任何细节,定制化程度非常高,很多可视化库都是基于matplotlib做二次开发的,或者是matplotlib的拓展,比如seaborn、pandas、mplfinance、DNA Features Viewer等,它们能应用于数据科学、金融量化、生物医学等各领域科研绘图。另外如果你觉得matplotlib 绘图太麻烦,可以用seaborn,它是专门用于统计绘图的库,非常美观。

2025-07-13 13:01:18 435

原创 聊一聊Python中优秀的6个地图可视化库

地理空间数据无处不在:在这次新冠肺炎大流行中,我们见识到了各种地理空间数据可视化工具制作出的各种风格的地图。的API提供直观的界面和通用的语法,使得利用它制作可视化作品非常容易,譬如下面的例子中与。就是其中专注于地理空间数据可视化的库,提供了灵活方便的地理空间数据可视化功能。的使用者来说,有几个非常强大的库可以帮助我们进行地理空间数据可视化。迅速的看到基础地图,也可以根据你的数据对其叠加不同图层,下面是。开放的接口,配合大量有意思的插件制作出交互式的在线地图。的可视化库,可以用来制作在线交互式地图,其与。

2025-07-12 09:24:13 361

原创 这个Pandas函数可以自动爬取Web图表

Pandas作为数据科学领域鳌头独占的利器,有着丰富多样的函数,能实现各种意想不到的功能。作为学习者没办法一次性掌握Pandas所有的方法,需要慢慢积累,多看多练。这次为大家介绍一个非常实用且神奇的函数-,它可免去写爬虫的烦恼,自动帮你抓取静态网页中的表格。只需要传入url,就可以抓取网页中的所有表格,抓取表格后存到列表,列表中的每一个表格都是dataframe格式。可以看到上面html里是table表格数据,刚好适合抓取。输出:1。

2025-07-12 09:23:38 449

100个Github Python项目

整理了100个在Github上热门的Python项目,包含数据科学、web应用、游戏、可视化、机器学习、自动化等等

2024-04-22

16个matplotlib绘图技巧

包含了Python Matplotlib库可视化绘图的各种技巧,如标题、文本、注释、坐标轴、图例、颜色等等

2024-04-22

60个Numpy函数和方法解析

Python第三方库Numpy的函数和方法解析

2024-04-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除