用Python分析明天上映电影《保你平安》观众评论数据,看看是否值得去观看

使用Python3.8和Pycharm,通过抓包分析获取《保你平安》电影点映评论数据,解析并存储到CSV,进一步用Pyecharts进行推荐和地区分布的可视化展示,以评估电影口碑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近有一部叫《保你平安》的电影,三月十号上映,也就是明天
很多看过点映的人,都是一致好评,但真的好看吗?
因为没上映,现在豆瓣评分还没出来,但不妨我们用Python,把提前点映看过的观众的评论获取下来,分析分析

开发环境

  • Python 3.8
  • Pycharm

实现代码的基本思路:

数据来源分析:

  1. 明确需求:
  • 采集的网站是什么?
  • 采集的数据是什么?
    评论相关数据
  1. 抓包分析相关数据来源
    通过浏览器自带开发者工具进行抓包分析 <重点>
  • 打开开发者工具: F12 或者 鼠标右键点击检查选择network
  • 刷新网页: 让本网页的数据内容重新加载一遍
  • 关键字搜索: 通过关键字<要的数据>, 搜索查询相对应的数据包
  1. 利用获取的数据进行可视化分析

数据获取代码实现步骤

发送请求

# 请求链接
url = f'https://movie.douban.com/subject/35457272/comments?start=20&limit=20&status=P&sort=new_score'
# 伪装模拟
headers = {
    # User-Agent 用户代理, 表示浏览器基本身份标识
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36'
}
# 发送请求
response = requests.get(url=url, headers=headers)
# <Response [200]>
print(response)

解析数据

# 把获取下来html字符串数据 <response.text>, 转成可解析对象 <Selector xpath=None data='<html lang="zh-CN" class="ua-windows ...'>
selector = parsel.Selector(response.text)  # ---> 你现金是美元, 没办法在中国使用 <先去银行兑换RMB>
# 第一次提取, 所有div标签
divs = selector.css('div.comment-item')
# for循环遍历, 把列表里面元素一个一个提取出来
for div in divs:
    name = div.css('.comment-info a::text').get()  # 昵称
    rating = div.css('.rating::attr(title)').get()  # 推荐
    date = div.css('.comment-time::attr(title)').get()  # 时间
    area = div.css('.comment-location::text').get()  # 地区
    votes = div.css('.votes::text').get()  # 有用
    short = div.css('.short::text').get().replace('\n', '')  # 评论
    # 数据存字典里面
    dit = {
        '昵称': name,
        '推荐': rating,
        '时间': date,
        '地区': area,
        '有用': votes,
        '评论': short,
    }

写入数据

f = open('保你平安.csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=[
    '昵称',
    '推荐',
    '时间',
    '地区',
    '有用',
    '评论',
])
csv_writer.writeheader()

可视化展示

读取相关数据

df = pd.read_csv('保你平安.csv')
df.head()

推荐分布

import pyecharts.options as opts
from pyecharts.charts import Pie

data_pair = [list(z) for z in zip(evaluate_type, evaluate_num)]
data_pair.sort(key=lambda x: x[1])

c = (
    Pie(init_opts=opts.InitOpts(bg_color="#2c343c"))
    .add(
        series_name="豆瓣影评",
        data_pair=data_pair,
        rosetype="radius",
        radius="55%",
        center=["50%", "50%"],
        label_opts=opts.LabelOpts(is_show=False, position="center"),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="推荐分布",
            pos_left="center",
            pos_top="20",
            title_textstyle_opts=opts.TextStyleOpts(color="#fff"),
        ),
        legend_opts=opts.LegendOpts(is_show=False),
    )
    .set_series_opts(
        tooltip_opts=opts.TooltipOpts(
            trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"
        ),
        label_opts=opts.LabelOpts(color="rgba(255, 255, 255, 0.3)"),
    )
)
c.render_notebook()

地区分布

import pyecharts.options as opts
from pyecharts.charts import Pie

data_pair = [list(z) for z in zip(area_type, area_num)]
data_pair.sort(key=lambda x: x[1])

d = (
    Pie(init_opts=opts.InitOpts(bg_color="#2c343c"))
    .add(
        series_name="豆瓣影评",
        data_pair=data_pair,
        rosetype="radius",
        radius="55%",
        center=["50%", "50%"],
        label_opts=opts.LabelOpts(is_show=False, position="center"),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="地区分布",
            pos_left="center",
            pos_top="20",
            title_textstyle_opts=opts.TextStyleOpts(color="#fff"),
        ),
        legend_opts=opts.LegendOpts(is_show=False),
    )
    .set_series_opts(
        tooltip_opts=opts.TooltipOpts(
            trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"
        ),
        label_opts=opts.LabelOpts(color="rgba(255, 255, 255, 0.3)"),
    )
)
d.render_notebook()

这样分析下来,好像还不错呀,应该是值得一看的

👇问题解答 · 源码获取 · 技术交流 · 抱团学习请联系👇
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值