Mindspore网络构建

本文介绍了Mindspore中网络构建的过程,包括定义模型类、模型层、参数模型以及内置的神经网络层如基本构成单元、循环神经网络层、嵌入层、池化层和图像处理层。通过面向对象编程思想,可以方便地构建和管理神经网络结构,例如用于Mnist数据集分类的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络构建

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

 

构建Mnist数据集分类的神经网络

import mindspore
from mindspore import nn, ops

 个人理解:在代码层面也就是直接调用模块,通过模块来实现我们想要达成的效果。

定义模型类

定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits


#构建完成后,实例化Network对象,并查看其结构。

model = Network()
print(model)
Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
  >
>


#我们构造一个输入数据,直接调用模型,可以获得一个10维的Tensor输出,其包含每个类别的原始预测值。
X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
print(logits)

pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

模型层

分解上节构造的神经网络模型中的每一层。

input_image = ops.ones((5, 15, 18), mindspore.float32)
print(input_image.shape)

#输出结果

(5, 15, 18)


#nn.Flatten层的实例化

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)

#nn.Dense全链层,权重和偏差对输入进行线性变换
layer1 = nn.Dense(in_channels=20*20, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)


#nn.ReLU层,网络中加入非线性的激活函数
print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跳楼梯企鹅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值