YOLO V10安装、使用、训练大全

一、下载官方源码

二、配置conda环境

# 1.在conda创建python3.9环境
conda create -n yolov10 python=3.9
# 2.激活切换到创建的python3.9环境
conda activate yolov10

三、安装YOLOV10依赖

# 1.切换到yolov10源码根目录下,安装依赖
# 注意:会自动根据你是否有GPU自动选择pytorch版本进行按照,这里不需要自己去选择pytorch和cuda按照,非常良心
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
# 2.运行下面的命令,才可以在命令行使用yolo等命令
pip install -e .

四、使用官方YOLO V10模型

1.下载模型

在这里插入图片描述

  • 模型下载
    • YOLOv10-N:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt
    • YOLOv10-S:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
    • YOLOv10-M:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt
    • YOLOv10-B:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt
    • YOLOv10-L:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt
    • YOLOv10-X:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt
  • 下载完放入源码根目录

2.使用模型

2.1 图片案例

import cv2
from ultralytics import YOLOv10

# 加载模型
model = YOLOv10("yolov10m.pt")

# 批量运算
results = model(["./datasets/group1/images/train/9597185011003UY_20240610_092234_555.png"], stream=True)

for result in results:
    boxes_cls_len = len(result.boxes.cls)
    if not boxes_cls_len:
        # 没有检测到内容
        continue
    for boxes_cls_index in range(boxes_cls_len):
        # 获取类别id
        class_id = int(result.boxes.cls[boxes_cls_index].item())
        # 获取类别名称
        class_name = result.names[class_id]

        # 获取相似度
        similarity = result.boxes.conf[boxes_cls_index].item()

        # 获取坐标值,左上角 和 右下角:lt_rb的值:[1145.1351318359375, 432.6763000488281, 1275.398681640625, 749.5224609375]
        lt_rb = result.boxes.xyxy[boxes_cls_index].tolist()
        # 转为:[[1145.1351318359375, 432.6763000488281], [1275.398681640625, 749.5224609375]]
        lt_rb = [[lt_rb[0], lt_rb[1]], [lt_rb[0], lt_rb[1]]]

        print("类别:", class_name, "相似度:", similarity, "坐标:", lt_rb)

    # 图片展示
    annotated_image = result.plot()
    annotated_image = annotated_image[:, :, ::-1]
    if annotated_image is not None:
        cv2.imshow("Annotated Image", annotated_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

五、制作数据集

  • 一般会将所有图片放到一个文件夹,打完标注后,从总的文件夹中,分别分不同的图片到训练集和数据集

1.数据集目录结构

在这里插入图片描述

2.标注工具

  • Labelimg是一款开源的数据标注工具,可以标注三种格式。
    • VOC标签格式,保存为xml文件。
    • yolo标签格式,保存为txt文件。
    • createML标签格式,保存为json格式。

2.1 安装标注工具

pip install labelimg -i https://pypi.doubanio.com/simple

2.2 运行标注工具

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值