一、下载官方源码
二、配置conda环境
# 1.在conda创建python3.9环境
conda create -n yolov10 python=3.9
# 2.激活切换到创建的python3.9环境
conda activate yolov10
三、安装YOLOV10依赖
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
pip install -e .
四、使用官方YOLO V10模型
1.下载模型

- 模型下载
- YOLOv10-N:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt
- YOLOv10-S:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
- YOLOv10-M:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt
- YOLOv10-B:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt
- YOLOv10-L:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt
- YOLOv10-X:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt
- 下载完放入源码根目录
2.使用模型
2.1 图片案例
import cv2
from ultralytics import YOLOv10
model = YOLOv10("yolov10m.pt")
results = model(["./datasets/group1/images/train/9597185011003UY_20240610_092234_555.png"], stream=True)
for result in results:
boxes_cls_len = len(result.boxes.cls)
if not boxes_cls_len:
continue
for boxes_cls_index in range(boxes_cls_len):
class_id = int(result.boxes.cls[boxes_cls_index].item())
class_name = result.names[class_id]
similarity = result.boxes.conf[boxes_cls_index].item()
lt_rb = result.boxes.xyxy[boxes_cls_index].tolist()
lt_rb = [[lt_rb[0], lt_rb[1]], [lt_rb[0], lt_rb[1]]]
print("类别:", class_name, "相似度:", similarity, "坐标:", lt_rb)
annotated_image = result.plot()
annotated_image = annotated_image[:, :, ::-1]
if annotated_image is not None:
cv2.imshow("Annotated Image", annotated_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
五、制作数据集
- 一般会将所有图片放到一个文件夹,打完标注后,从总的文件夹中,分别分不同的图片到训练集和数据集
1.数据集目录结构

2.标注工具
- Labelimg是一款开源的数据标注工具,可以标注三种格式。
- VOC标签格式,保存为xml文件。
- yolo标签格式,保存为txt文件。
- createML标签格式,保存为json格式。
2.1 安装标注工具
pip install labelimg -i https://pypi.doubanio.com/simple
2.2 运行标注工具