传统 RAG 存在很多问题,比如:只能检索和生成一次,无法动态搜索更多信息,难以处理复杂查询的推理问题,且传统 RAG 系统不能根据问题调整策略。Agentic RAG 旨在解决这些问题,其核心在于在 RAG 的每个阶段引入 AI Agent 智能体达到智能化行为。
—1—
传统 RAG 架构设计
传统 RAG (Retrieval-Augmented Generation,即“检索增强生成”)模型在多个方面存在局限,如下图所示:
首先,其检索和生成过程仅进行一次,无法在上下文信息不足时进行动态搜索和补充;
其次,缺乏必要的推理能力,难以应对复杂查询;
最后,系统策略固定,无法根据不同问题进行灵活调整。
—2—
Agentic RAG 架构设计
Agentic RAG 尝试克服传统 RAG 的诸多问题。其创新之处在于在每个阶段融入 AI Agent 智能体的智能化(Agentic)行为,如下图所示:
具体处理流程如下图所示:
首先第1-2步,AI Agent 智能体会重写查询以纠正错误;
接着第3-8步,AI Agent 智能体判断是否需要额外上下文信息,并据此选择最佳外部来源;
然后第9步,将信息传递给 LLM 大模型生成响应;
最后,AI Agent 智能体会检查答案相关性,决定是否返回响应或重新从第1步开始。
此过程可重复进行,确保生成结果与目标一致。需强调的是,此 Agentic RAG 架构仅为多种可能之一,可根据实际需求进行定制。