RAG系列:从传统 RAG 演进到 Agentic RAG 架构设计

传统 RAG 存在很多问题,比如:只能检索和生成一次,无法动态搜索更多信息,难以处理复杂查询的推理问题,且传统 RAG 系统不能根据问题调整策略。Agentic RAG 旨在解决这些问题,其核心在于在 RAG 的每个阶段引入 AI Agent 智能体达到智能化行为。

图片

1

传统 RAG 架构设计

传统 RAG (Retrieval-Augmented Generation,即“检索增强生成”)模型在多个方面存在局限,如下图所示:

图片

首先,其检索和生成过程仅进行一次,无法在上下文信息不足时进行动态搜索和补充;

其次,缺乏必要的推理能力,难以应对复杂查询;

最后,系统策略固定,无法根据不同问题进行灵活调整。

2

Agentic RAG 架构设计

Agentic RAG 尝试克服传统 RAG 的诸多问题。其创新之处在于在每个阶段融入 AI Agent 智能体的智能化(Agentic)行为,如下图所示:

图片

具体处理流程如下图所示:

图片

首先第1-2步,AI Agent 智能体会重写查询以纠正错误;

接着第3-8步,AI Agent 智能体判断是否需要额外上下文信息,并据此选择最佳外部来源;

然后第9步,将信息传递给 LLM 大模型生成响应;

最后,AI Agent 智能体会检查答案相关性,决定是否返回响应或重新从第1步开始。

此过程可重复进行,确保生成结果与目标一致。需强调的是,此 Agentic RAG 架构仅为多种可能之一,可根据实际需求进行定制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数智前沿

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值