丹摩 | 使用 DAMODEL 平台训练手写数字识别模型的详细教程

在这里插入图片描述


博客目标

这篇博客将指导开发者如何使用 DAMODEL 平台训练一个基于 PyTorch 的手写数字识别模型(MNIST 数据集),同时标记出操作中的重点环节,帮助快速掌握流程。


步骤一:注册并登录 DAMODEL

重点:注册与登录
  1. 注册账号

    • 访问 DAMODEL 官方网站,注册并完成实名认证。
    • 领取新用户奖励,如赠送 GPU 使用时长。
  2. 登录控制台

    • 登录后,进入控制台,选择“创建云实例”。
      在这里插入图片描述

步骤二:创建 GPU 云实例

重点:计算资源配置
  1. 选择计算资源

    • 点击“创建实例”,推荐使用 NVIDIA GeForce RTX 4090H800
      在这里插入图片描述
    • 配置实例:内存 16GB、系统盘 50GB、操作系统 Ubuntu 20.04
      在这里插入图片描述
  2. 启动实例

    • 启动实例后,通过远程终端或 SSH 登录。
      在这里插入图片描述
      在这里插入图片描述
      这里的密钥对自己随便创建一个就可以了
      在这里插入图片描述
      出现创建中就可以等一会
      在这里插入图片描述

步骤三:配置开发环境

打开终端
在这里插入图片描述

重点:环境搭建
  1. 安装基础工具
    sudo apt update && sudo apt upgrade -y
    sudo apt install python3 python3-pip git -y
    
  2. 创建虚拟环境
    pip3 install virtualenv
    virtualenv mnist_env
    source mnist_env/bin/activate
    

在这里插入图片描述
创建完虚拟环境以后前面会有(venu)

  1. 安装深度学习框架
    pip install torch torchvision matplotlib
    

步骤四:获取代码并准备数据

重点:数据与模型初始化
  1. 下载 MNIST 数据集

    from torchvision import datasets, transforms
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
    train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
    test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    
  2. 编写模型代码

    import torch.nn as nn
    import torch.nn.functional as F
    
    class SimpleNN(nn.Module):
        def __init__(self):
            super(SimpleNN, self).__init__()
            self.fc1 = nn.Linear(28*28, 128)
            self.fc2 = nn.Linear(128, 64)
            self.fc3 = nn.Linear(64, 10)
    
        def forward(self, x):
            x = x.view(-1, 28*28)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
    

步骤五:训练模型

重点:模型训练流程
  1. 定义训练脚本

    import torch.optim as optim
    from torch.utils.data import DataLoader
    
    model = SimpleNN()
    optimizer = optim.SGD(model.parameters(), lr=0.01)
    criterion = nn.CrossEntropyLoss()
    
    train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
    
    for epoch in range(5):  # 训练 5 个周期
        running_loss = 0
        for images, labels in train_loader:
            optimizer.zero_grad()
            output = model(images)
            loss = criterion(output, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
        print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}")
    
  2. 运行训练脚本
    将代码保存为 train_mnist.py 并运行:

    python train_mnist.py
    

步骤六:验证模型

重点:测试与验证
  1. 测试模型性能
    test_loader = DataLoader(test_data, batch_size=64, shuffle=False)
    
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in test_loader:
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    print(f"Accuracy: {100 * correct / total}%")
    

步骤七:保存和下载模型

重点:模型保存与导出
  1. 保存模型
    torch.save(model.state_dict(), "mnist_model.pth")
    
  2. 下载模型
    • 使用 SFTP 工具或 DAMODEL 的文件管理功能将模型下载到本地。

步骤八:清理资源

重点:节约资源
  • 在 DAMODEL 控制台停止并删除实例,避免额外费用。

总结与展望

通过 DAMODEL 平台,你可以快速完成 MNIST 模型的训练与部署。未来,可探索更复杂的神经网络模型或多实例分布式训练。随着 DAMODEL 不断优化,开发者将能够更高效地完成 AI 项目。


学习资源

通过这些资源,扩展你的深度学习技能!

### 设置云平台环境 为了在云平台上顺利训练YOLOv8模型,需先创建并配置适合的运行环境。这通常涉及选择合适的云计服务提供商,如DAMODEL平台,在该平台上启动具有适当硬件资源(特别是GPU支持)的实例[^1]。 ```bash # 安装必要的依赖库 pip install ultralytics torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 安装完成后,还需确保Python版本兼容,并根据需求调整虚拟环境设置。 ### 配置参数与数据准备 完成环境搭建后,下一步是准备好用于训练的数据集。此过程包括收集、标注图片文件及其对应的边界框信息。对于YOLOv8而言,推荐采用COCO格式存储这些数据,以便于后续处理和加载[^2]。 ```yaml train: ./datasets/train/images/ val: ./datasets/valid/images/ nc: 80 names: ['person', 'bicycle', ... , 'toothbrush'] ``` 上述YAML配置文件定义了训练集路径、类别数量及名称列表;依据具体项目情况修改相应字段即可满足个性化要求。 ### 开始模型训练 一切就绪之后便可以着手编写脚本执行实际训练操作: ```python from ultralytics import YOLO model = YOLO('yolov8n.yaml') # 加载自定义架构或官方预训练权重 results = model.train(data='./data.yaml', epochs=100, imgsz=640) ``` 这段代码片段展示了如何利用`ultralytics`库快速初始化YOLOv8网络结构,并通过指定超参来控制整个流程中的重要环节,比如迭代次数(`epochs`)和输入尺寸(`imgsz`)等。 ### 性能优化建议 针对可能遇到的速度瓶颈或者精度不足等问题,这里给出几点通用性的改进建议: - **混合精度训练**:启用FP16半精度浮点数运可有效减少显存占用量的同时加快收敛速度; - **分布式多卡加速**:当单张GPU难以支撑大规模样本时考虑借助集群计实现并行化作业调度; - **迁移学习策略**:基于相似领域内已有的优秀成果做微调往往能够取得事半功倍的效果[^3]。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值