LCD-LMD-PSO-ELM的电能质量分类,LCD特征提取,LMD特征提取,粒子群算法优化极限学习机

该博客介绍了利用LCD和LMD特征提取结合粒子群算法优化的极限学习机(ELM)进行电能质量分类的方法。详细探讨了极限学习机的原理、粒子群算法的细节,包括主要参数和流程图,并展示了LCD-LMD-PSO-ELM的实际应用效果和结果分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

背影
极限学习机
LCD-LMD-PSO-ELM的电能质量分类,LCD特征提取,LMD特征提取,粒子群算法优化极限学习机
主要参数
MATLAB代码
效果图
结果分析
展望
完整代码下载链接:LCD-LMD-PSO-ELM的电能质量分类,LCD特征提取,LMD特征提取,粒子群算法优化极限学习机资源-CSDN文库 https://download.csdn.net/download/abc991835105/88767298

背影

极限学习机是在BP神经网络上改进的一种网络,拥有无限拟合能力,但是容易过拟合,本文通过基于BP神经网络的住宅价格预测,基于粒子群算法优化极限学习机的价格预测

摘要

极限学习机原理,粒子群算法的原理,粒子群算法的主要参数,粒子群算法流程图,LCD-LMD-PSO-ELM的电能质量分类,LCD特征提取,LMD特征提取,粒子群算法优化极限学习机

极限学习机

极限学习机(Extreme Learning Machine, ELM)或“超限学习机”是一类基于前馈神经网络(Feedforward Neuron Network, FNN)构建的机器学习系统或方法,适用于监督学习和非监督学习问题
[1]
。ELM在研究中被视为一类特殊的FNN,或对FNN及其反向传播算法的改进,其特点是隐含层节点的权重为随机或人为给定的,且不需要更新,学习过程仅计算输出权重
[2]
。传统的ELM具有单隐含层,在与其它浅层学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经网络机器学习智能算法画图绘图

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值