买卖股票的最佳时机III

文章介绍了如何使用动态规划方法解决股票买卖问题,关注在最多两次交易的情况下,确定每天的最佳操作以获取最大利润。关键点在于理解每天的四种状态及其状态转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

买卖股票的最佳时机III

题目描述


注意点

  • 1 <= prices.length <= 100000
  • 0 <= prices[i] <= 100000
  • 不能同时参与多笔交易(必须在再次购买前出售掉之前的股票)
  • 最多可以完成 两笔 交易

解答思路

  • 本题最多可以完成两笔交易,所以在任意一天,都会有五种状态,分别是无操作、第一次买入、第一次卖出、第二次买入、第二次卖出。需要注意的是,当天同时买入卖出是无意义的,利润不会改变,仅仅是增加了交易次数,不在考虑范围之内。同时无操作的利润始终为0,可以忽略不记,所以将每一天都分割成其余四种状态
  • 关键是怎么通过第i - 1天推出第i天四种状态的最大利润,可以分为以下几种
    • 当处于第一次买入的状态,其可能是第i天购入也可能是之前就已经购入,取决于哪天购买的成本更低,所以dp[i][0] = Math.max(dp[i - 1][0], -prices[i]),注意第i - 1天购入的话需要花费prices[i]的成本,所以为负数
    • 当处于第一次卖出的状态,其可能是第i天卖出也可能是之前就已经卖出,取决于哪天卖出的利润更高,所以dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]),dp[i - 1][0]是第一次购买最低的成本,其可以保证当天卖出在前i - 1天当中所得到的利润是最大的
    • 当处于第二次买入的状态,其与第一次买入的状态类似,区别是第一次已经交易成功了,所以如果当天买入的话dp[i][2]的值还要加上第一次交易所得到的最大利润,也就是dp[i - 1][1],所以dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] - prices[i])
    • 当处于第二次卖入的状态,其与第二次卖出的状态类似,dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] + prices[i])
  • 需要注意的是,dp[0][2]与dp[0][0]一样,初始需要给默认值-prices[0],在第一次交易未完成时,dp[i][2]实际上始终与dp[i][0]相同,dp[i][3]与dp[i][1]也是如此,实际上此时第二次交易也是第一次交易(因为dp[i - 1][1]始终都为0,此时dp[i][2] = Math.max(dp[i - 1][2], - prices[i - 1]))。当第一次交易完成时,dp[i][2]就需要在第一次交易获得利润的基础上进行考虑,其购买的成本会变为dp[i - 1][1] - prices[i - 1]

代码

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        // 二维数组,dp[i][j]表示第i天时处于第j中状态的最大利润
        /**
         * j有以下四种状态
         * 0:第一次持有股票
         * 1:第一次不持有股票(也就是完成第一次交易)
         * 2:第二次持有股票
         * 3:第二次不持有股票(也就是完成第二次交易)
         * 不做任何操作也是一种状态,但是对结果无影响不考虑
         */
        int[][] dp = new int[n][4];
        dp[0][0] = -prices[0];
        dp[0][2] = -prices[0];
        for (int i = 1; i < n; i++) {
            // 第i天购买或者之前就已购买,取购买花费更低的成本
            dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
            // 第i天卖出或者之前就已卖出,取卖出得到更高的利润
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
            // 第i天购买或者之前就已购买,取购买花费更低的成本,第二次交易还要加上第一次交易所得的利润
            dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] - prices[i]);
            // 第i天卖出或者之前就已卖出,取卖出得到更高的利润
            dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] + prices[i]);
        }
        return Math.max(dp[n - 1][1], dp[n - 1][3]);
    }
}

关键点

  • 动态规划的思想
  • 每天买卖股票的四种状态
  • 怎么根据dp[i - 1][j]推出dp[i][j]
  • 注意初始对dp[0][j]的赋值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值