(进阶)001 - AWS DeepRacer获取log

本文介绍了在自动驾驶模拟训练中如何获取和管理log,包括通过reward_function打印参数、下载log文件、理解traininglog文件结构。log内容包含了训练过程的关键信息,如环境参数、车辆状态、轨迹和奖励等。后续文章将对log进行深入分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何获取log

reward_function 中通过print可以将params入口参数打印到log中,然后通过控制台Download logs可以获取自定义的log格式
在这里插入图片描述

一个打印log的代码示例

def reward_function(params):
    '''
    Env: re:Invent 2018
    '''
    x = params['x']
    y = params['y']
    next_waypoints=params['closest_waypoints'][1]
    is_crashed=params['is_crashed']
    is_left_of_center=params['is_left_of_center']
    is_offtrack=params['is_offtrack']
    is_reversed=params['is_reversed']
    heading=params['heading']
    progress=params['progress']
    steering_angle=params['steering_angle']
    steps=params['steps']
    track_length=params['track_length']
    waypoints=params['waypoints']
    track_width = params['track_width']
    distance_from_center = params['distance_from_center']
    all_wheels_on_track = params['all_wheels_on_track']
    speed = params['speed']
    abs_steering = abs(params['steering_angle'])
    reward = 1.0
    
    def printLog():
        print('reward_constant_Log,{track_length},{waypoints}'.format(track_length=track_length,waypoints=waypoints))
        print('''reward_var_Log,{steps},{next_waypoints},{x},{y},{all_wheels_on_track},{speed},{reward},{distance_from_center},{progress},{steering_angle},{heading},{track_width},{is_offtrack},{is_crashed},{is_left_of_center},{is_reversed}'''.format(
        steps=steps,
        next_waypoints=next_waypoints,
        x=x,
        y=y,
        all_wheels_on_track=all_wheels_on_track,
        speed=speed,
        reward=reward,
        distance_from_center=distance_from_center,
        progress=progress,
        steering_angle=steering_angle,
        heading=heading,
        track_width=track_width,
        is_offtrack=is_offtrack,
        is_crashed=is_crashed,
        is_left_of_center=is_left_of_center,
        is_reversed=is_reversed
        ))

    printLog()
    
    return float(reward)

下载log

下载下来的log 是

'{modelName}-training_job_xxxx_logs.tar.gz'

在这里插入图片描述

training log 文件结构

以下是解压后log文件结构,以及每个文件夹下文件记录的数据的来源,此处只做最简单的介绍后期日志分析时再做进一步深入探究。

│  2018-getlog-training_job_SS2xzf4LQgmyiUdiaAhPNw_logs.tar.gz
│  GetLog.py
│  getLogExample.py
│
└─29e9138b-9fd9-4f01-8952-a4d4dd7a02b8
    ├─logs                                        # logs下为训练过程日志
    │  └─training
    │          training-20211009172232-SS2xzf4LQgmyiUdiaAhPNw-sagemaker.log
    │          training-20211009172233-SS2xzf4LQgmyiUdiaAhPNw-robomaker.log     # 自定义的日志将放在这里
    │
    ├─metrics                              # metrics下为训练过程指标
    │  └─training
    │          training-20211009164204-SS2xzf4LQgmyiUdiaAhPNw.json
    │
    └─sim-trace                         # sim-trace下为每个iteration下的trace以及对应reward的记录
        └─training
            └─training-simtrace
                    0-iteration.csv
                    1-iteration.csv
                    10-iteration.csv
                    11-iteration.csv
                    12-iteration.csv
                    2-iteration.csv
                    3-iteration.csv
                    4-iteration.csv
                    5-iteration.csv
                    6-iteration.csv
                    7-iteration.csv
                    8-iteration.csv
                    9-iteration.csv

自定义log位置

在这里插入图片描述

自定义log内容

下一篇文章将会对这个log提取之后进行深入分析
在这里插入图片描述

Evaluation log文件结构

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rambo.Fan

码字不易,打赏有动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值