PCL库特征提取

PCL (Point Cloud Library) 是用于处理2D/3D 图像以及点云的一个大型开源项目。学习PCL最好的途径是阅读其官网文档(Point Cloud Library (PCL))。虽然PCL的网站文档稍微有点“丑”,但是其内容十分详尽。从应用的角度而言,PCL可以用于点云的分割、分类、校准以及可视化等方面。从理论角度而言,PCL中包含的众多算法能更好得帮助人们理解与创造新的点云算法。无论是工业应用还是科研攻关,PCL都能在三维数据处理领域祝您一臂之力。

激光雷达作为自动驾驶最常用的传感器,经常需要使用激光雷达来做建图、定位和感知等任务。

而这时候使用降低点云规模的预处理方法,可以能够去除无关区域的点以及降低点云规模。并能够给后续的PCL点云分割带来有效的收益。

1. 三维激光雷达压缩成二维

#include <ros/ros.h>

#include <pcl/point_cloud.h>
#include <pcl/point_types.h>


void filterGroundPlane(const PCLPointCloud& pc,
                        PCLPointCloud& ground, 
                        PCLPointCloud& nonground)
{
    ground.header = pc.header;
    nonground.header = pc.header;
    if (pc.size() < 50){
        ROS_WARN("Pointcloud in OctomapServer too small, skipping ground plane extraction");
        nonground = pc;
    } else {
        // https://blog.csdn.net/weixin_41552975/article/details/120428619
        // 指模型参数,如果是平面的话应该是指a b c d四个参数值
        pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
        pcl::PointIndices::Ptr inliers (new pcl::PointIndices);    // 创建分割对象
        pcl::SACSegmentation<PCLPoint> seg;    //可选设置
        seg.setOptimizeCoefficients (true);    //必须设置
        seg.setModelType(pcl::SACMODEL_PERPENDICULAR_PLANE);
        seg.setMethodType(pcl::SAC_RANSAC);    // 设置迭代次数的上限
        seg.setMaxIterations(200);    // 设置距离阈值
        seg.setDistanceThreshold (0.04);    //设置所搜索平面垂直的轴
        seg.setAxis(Eigen::Vector3f(0,0,1));    //设置待检测的平面模型和上述轴的最大角度
        seg.setEpsAngle(0.15);    // pc 赋值
        PCLPointCloud cloud_filtered(pc);    //创建滤波器
        pcl::ExtractIndices<PCLPoint> extract;
        bool groundPlaneFound = false;
        while(cloud_filtered.size() < 10 and !groundPlaneFound) {
            //  所有点云传入,并通过coefficients提取到所有平面
            seg.setInputCloud(cloud_filtered.makeShared());
            seg.segment (*inliers, *coefficients);
            if (inliers.indices.size() == 0) {
                ROS_INFO("PCL segmentation did not find any plane.");
                break;      
            }
            // 输入要滤波的点云
            extract.setInputCloud(cloud_filtered.makeShared());
            // 被提取的点的索引集合
            extract.setIndices(inliers);
            if (std::abs(coefficients->values.at(3)) < 0.07) {
                ROS_DEBUG("Ground plane found: %zu/%zu inliers. Coeff: %f %f %f %f", inliers.indices.size(), cloud_filtered.size(), 
                    coefficients->values.at(0), coefficients->values.at(1), coefficients->values.at(2), coefficients->values.at(3));   

                //true:滤波结果取反,false,则是取正        
                extract.setNegative (false);        //获取地面点集合,并传入ground        
                extract.filter (ground);        // 存在有不是平面的点        

                if (inliers->indices.size() != cloud_filtered.size()) {
                    extract.setNegative(true);          
                    CLPointCloud cloud_out;          // 传入cloud_out          
                    extract.filter(cloud_out);          // 不断减少cloud_filtered数目,同时累加nonground数目          
                    cloud_filtered = cloud_out;          
                    nonground += cloud_out;        
                }
                groundPlaneFound = true;
            } else { 
                // 否则提取那些不是平面的,然后剩下的就是平面点        
                ROS_DEBUG("Horizontal plane (not ground) found: %zu/%zu inliers. Coeff: %f %f %f %f", inliers.indices.size(), cloud_filtered.size(),  
                    coefficients->values.at(0), coefficients->values.at(1), coefficients->values.at(2), coefficients->values.at(3));

                pcl::PointCloud<PCLPoint> cloud_out;
                extract.setNegative (false);
                extract.filter(cloud_out);
                nonground +=cloud_out;

                if(inliers->indices.size() != cloud_filtered.size()){
                    extract.setNegative(true);
                    cloud_out.points.clear();
                    extract.filter(cloud_out);          
                    cloud_filtered = cloud_out;
                } else{
                    cloud_filtered.points.clear();
                }      
            }    
        }

        // 由于没有找到平面,则会进入下面
        if (!groundPlaneFound){
            ROS_WARN("No ground plane found in scan");      // 对高度进行粗略调整,以防止出现虚假障碍物      
            pcl::PassThrough<PCLPoint> second_pass;
            second_pass.setFilterFieldName("z");
            second_pass.setFilterLimits(-m_groundFilterPlaneDistance, m_groundFilterPlaneDistance);
            second_pass.setInputCloud(pc.makeShared());
            second_pass.filter(ground);
            second_pass.setFilterLimitsNegative (true);
            second_pass.filter(nonground);
        }

        // Create a set of planar coefficients with X=Y=0,Z=1    
        pcl::ModelCoefficients::Ptr coefficients1(new pcl::ModelCoefficients());
        coefficients1->values.resize(4);
        coefficients1->values[0] = 1;
        coefficients1->values[1] = 0;
        coefficients1->values[2] = 0;
        coefficients1->values[3] = 0;

        // Create the filtering object   
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_projected(new pcl::PointCloud<pcl::PointXYZ>);
        pcl::ProjectInliers<pcl::PointXYZ> proj;
        proj.setModelType(pcl::SACMODEL_PLANE);
        proj.setInputCloud(nonground);
        proj.setModelCoefficients(coefficients1);
        proj.filter(*cloud_projected);

        if (cloud_projected.size() > 0)
            writer.write<PCLPoint>("cloud_projected.pcd",cloud_projected, false);
    }
}

2. 面特征提取

PCL中Sample——consensus模块提供了RANSAC平面拟合模块。

SACMODEL_PLANE 模型:定义为平面模型,共设置四个参数 [normal_x, normal_y, normal_z, d]。其中,(normal_x, normal_y, normal_z)为平面法向量,d为常数项。

pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;

//创建分割时所需要的模型系数对象,coefficients及存储内点的点索引集合对象inliers 
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients); 
pcl::PointIndices::Ptr inliers(new pcl::PointIndices); 
// 创建分割对象 
pcl::SACSegmentation& lt;
pcl::PointXYZ& gt;
// 可选择配置,设置模型系数需要优化
seg.setOptimizeCoefficients(true); 
// 必要的配置,设置分割的模型类型,所用的随机参数估计方法,距离阀值,输入点云 
seg.setModelType(pcl::SACMODEL_PLANE); //设置模型类型 
seg.setMethodType(pcl::SAC_RANSAC);
//设置随机采样一致性方法类型 
seg.setDistanceThreshold(0.01);
//设定距离阀值,距离阀值决定了点被认为是局内点是必须满足的条件国,表示点到估计模型的距离最大值
seg.setInputCloud(cloud);
//引发分割实现,存储分割结果到点几何inliers及存储平面模型的系数coefficients 
seg.segment(*inliers, *coefficients);

3. 圆柱体提取

圆柱体的提取也是基于Ransec来实现提取,RANSAC从样本中随机抽选出一个样本子集,使用最小方差估计算法对这个子集计算模型参数,然后计算所有样本与该模型的偏差。

再使用一个预先设定好的阈值与偏差比较,当偏差小于阈值时,该样本点属于模型内样本点(inliers),简称内点,否则为模型外样本点(outliers),简称外点。

pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;

// Create the segmentation object for cylinder segmentation and set all the parameters
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_CYLINDER);   // 提取圆柱体的操作
seg.setMethodType(pcl::SAC_RANSAC);
seg.setNormalDistanceWeight(0.1);
seg.setMaxIterations(10000);
seg.setDistanceThreshold(0.05);   // 距离5cm
seg.setRadiusLimits(0, 0.1);    // 半径 10cm
seg.setInputCloud(cloud_filtered2);
seg.setInputNormals(cloud_normals2);

// Obtain the cylinder inliers and coefficients
seg.segment(*inliers_cylinder, *coefficients_cylinder);
std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl;

4. 半径近邻

半径内近邻搜索(Neighbors within Radius Search),是指搜索点云中一点在球体半径 R内的所有近邻点。

// Neighbors within radius search
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
float radius = 256.0f * rand () / (RAND_MAX + 1.0f);

if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 )
{
  for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
    std::cout << "    "  <<   cloud->points[ pointIdxRadiusSearch[i] ].x 
              << " " << cloud->points[ pointIdxRadiusSearch[i] ].y 
              << " " << cloud->points[ pointIdxRadiusSearch[i] ].z 
              << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
}

5. 聚类

首先选取种子点,利用kd-tree对种子点进行半径r邻域搜索,若邻域内存在点,则与种子点归为同一聚类簇Q;


欧式聚类:
void Cvisualization::ShowCloud4()
{
    //读入点云数据table_scene_lms400.pcd
    pcl::PCDReader reader;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
    reader.read ("E:/ai/pcltest/20210903changhuAM-0001.pcd", *cloud);
    std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*
    //    /*从输入的.PCD文件载入数据后,我们创建了一个VoxelGrid滤波器对数据进行下采样,我们在这里进行下采样的原       因是来加速处理过程,越少的点意味着分割循环中处理起来越快。*/
    // Create the filtering object: downsample the dataset using a leaf size of 1cm
    pcl::VoxelGrid<pcl::PointXYZ> vg; //体素栅格下采样对象
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
    vg.setInputCloud (cloud);
    vg.setLeafSize (0.01f, 0.01f, 0.01f); //设置采样的体素大小
    vg.filter (*cloud_filtered);  //执行采样保存数据
    std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*

    // Create the segmentation object for the planar model and set all the parameters
    pcl::SACSegmentation<pcl::PointXYZ> seg;//创建分割对象
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
    pcl::PCDWriter writer;
    seg.setOptimizeCoefficients (true);  //设置对估计的模型参数进行优化处理
    seg.setModelType (pcl::SACMODEL_PLANE);//设置分割模型类别
    seg.setMethodType (pcl::SAC_RANSAC);//设置用哪个随机参数估计方法
    seg.setMaxIterations (100);  //设置最大迭代次数
    seg.setDistanceThreshold (0.02);    //设置判断是否为模型内点的距离阈值

    int i=0, nr_points = (int) cloud_filtered->points.size ();
    while (cloud_filtered->points.size () > 0.3 * nr_points)
    {
        // Segment the largest planar component from the remaining cloud
        //      /*为了处理点云中包含多个模型,我们在一个循环中执行该过程,并在每次模型被提取后,我们保存剩余的点,进行迭代。模型内点通过分割过程获取,如下*/
        seg.setInputCloud (cloud_filtered);
        seg.segment (*inliers, *coefficients);
        if (inliers->indices.size () == 0)
        {
            std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
            break;
        }

        //移去平面局内点,提取剩余点云
        pcl::ExtractIndices<pcl::PointXYZ> extract;   //创建点云提取对象
        extract.setInputCloud (cloud_filtered);    //设置输入点云
        extract.setIndices (inliers);   //设置分割后的内点为需要提取的点集
        extract.setNegative (false); //设置提取内点而非外点
        // Get the points associated with the planar surface
        extract.filter (*cloud_plane);   //提取输出存储到cloud_plane
        std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

        // Remove the planar inliers, extract the rest
        extract.setNegative (true);
        extract.filter (*cloud_f);
        *cloud_filtered = *cloud_f;
    }

    // Creating the KdTree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud (cloud_filtered); //创建点云索引向量,用于存储实际的点云信息

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance (0.2); //设置近邻搜索的搜索半径为2cm
    ec.setMinClusterSize (100);//设置一个聚类需要的最少点数目为100
    ec.setMaxClusterSize (25000);//设置一个聚类需要的最大点数目为25000
    ec.setSearchMethod (tree);//设置点云的搜索机制
    ec.setInputCloud (cloud_filtered);
    ec.extract (cluster_indices);//从点云中提取聚类,并将点云索引保存在cluster_indices中

    //    /* 为了从点云索引向量中分割出每个聚类,必须迭代访问点云索引,每次创建一个新的点云数据集,并且将所有当前聚类的点写入到点云数据集中 */
    //迭代访问点云索引cluster_indices,直到分割出所有聚类
    int j = 0;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
        //创建新的点云数据集cloud_cluster,将所有当前聚类写入到点云数据集中
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
            cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
        cloud_cluster->width = cloud_cluster->points.size ();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;

        std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
        std::stringstream ss;
        ss << "E:/ai/pcltest/cloud_cluster_" << j << ".pcd";
        writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false);
        j++;
    }

    pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("HelloMyFirstVisualPCL"));
    viewer->addPointCloud<pcl::PointXYZ>(cloud, "sample cloud");
    while (!viewer->wasStopped())
    {
        viewer->spinOnce(100);
        boost::this_thread::sleep(boost::posix_time::microseconds(100000));
    }
}

6. 区域生长

区域生长的基本思想是将具有相似性质的点集合起来构成区域。

首先对每个需要分割的区域找出一个种子作为生长的起点,然后将种子周围邻域中与种子有相同或相似性质的点(根据事先确定的生长或相似准则来确定,多为法向量、曲率)归并到种子所在的区域中。

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/search/kdtree.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/region_growing.h>
#include <pcl/visualization/cloud_viewer.h>


int main()
{
   
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
 
    if (pcl::io::loadPCDFile("data//table_scene_lms400.pcd", *cloud) == -1)
    {
        std::cout << "Cloud reading failed." << std::endl;
        return (-1);
    }
    // 设置搜索方式为kdTree
    pcl::search::Search<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    // 计算法向量
    pcl::PointCloud <pcl::Normal>::Ptr normals(new pcl::PointCloud <pcl::Normal>);
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
    normal_estimator.setSearchMethod(tree);
    normal_estimator.setInputCloud(cloud);
    normal_estimator.setKSearch(50);
    normal_estimator.compute(*normals);
    //直通滤波在Z轴的0到1米之间
    pcl::IndicesPtr indices(new std::vector <int>);
    pcl::PassThrough<pcl::PointXYZ> pass;
    pass.setInputCloud(cloud);
    pass.setFilterFieldName("z");
    pass.setFilterLimits(0.0, 1.0);
    pass.filter(*indices);
    // 欧式聚类
    pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;
    reg.setMinClusterSize(5000);     //最小的聚类的点数
    reg.setMaxClusterSize(1000000);  //最大的聚类的点数
    reg.setSearchMethod(tree);       //搜索方式
    reg.setNumberOfNeighbours(30);   //设置搜索的邻域点的个数
    reg.setInputCloud(cloud);        //输入点
    //reg.setIndices (indices);
    reg.setInputNormals(normals);    //输入的法线
    reg.setSmoothnessThreshold(3.0 / 180.0 * M_PI);  //设置平滑度
    reg.setCurvatureThreshold(1.0);  //设置曲率的阀值
    // 获取聚类的结果,分割结果保存在点云索引的向量中
    std::vector <pcl::PointIndices> clusters;
    reg.extract(clusters);
    //输出聚类的数量
    std::cout << "Number of clusters is equal to " << clusters.size() << std::endl;
    // 输出第一个聚类的数量
    std::cout << "First cluster has " << clusters[0].indices.size() << " points." << endl;
    std::cout << "These are the indices of the points of the initial" <<
        std::endl << "cloud that belong to the first cluster:" << std::endl;

    int counter = 0;
    while (counter < clusters[0].indices.size())
    {
        std::cout << clusters[0].indices[counter] << ", ";
        counter++;
        if (counter % 10 == 0)
            std::cout << std::endl;
    }
    std::cout << std::endl;

    //可视化聚类的结果
    pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = reg.getColoredCloud();
    pcl::visualization::CloudViewer viewer("Cluster viewer");
    viewer.showCloud(colored_cloud);
    while (!viewer.wasStopped())
    {
    }

    return (0);
}

7. 线特征拟合

一般线特征拟合的方式前提是先要滤除不必要的点,而这个就需要使用K-D tree来先实现搜索

#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_line.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/segmentation/sac_segmentation.h>

using namespace std::chrono_literals;

pcl::visualization::PCLVisualizer::Ptr
simpleVis(pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud)
{
  // --------------------------------------------
  // -----Open 3D viewer and add point cloud-----
  // --------------------------------------------
  pcl::visualization::PCLVisualizer::Ptr viewer(
      new pcl::visualization::PCLVisualizer("3D Viewer"));
  viewer->setBackgroundColor(0, 0, 0);
  viewer->addPointCloud<pcl::PointXYZ>(cloud, "sample cloud");
  viewer->setPointCloudRenderingProperties(
      pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "sample cloud");
  // viewer->addCoordinateSystem (1.0, "global");
  //viewer->initCameraParameters();
  return (viewer);
}

pcl::PointCloud<pcl::PointXYZ>::Ptr
create_line(double x0, double y0, double z0, double a, double b, double c, double point_size = 1000, double step = 0.1)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_line(new pcl::PointCloud<pcl::PointXYZ>);
  cloud_line->width = point_size;
  cloud_line->height = 1;
  cloud_line->resize(cloud_line->width * cloud_line->height);

  for (std::size_t i = 0; i < cloud_line->points.size(); ++i) {
    cloud_line->points[i].x = x0 + a / std::pow(a * a + b * b + c * c, 0.5) * i * 0.1;
    cloud_line->points[i].y = y0 + b / std::pow(a * a + b * b + c * c, 0.5) * i * 0.1;
    cloud_line->points[i].z = z0 + c / std::pow(a * a + b * b + c * c, 0.5) * i * 0.1;
  }
  return cloud_line;
}

void fit_line(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, double distance_threshold)
{
  // fit line from a point cloud
  pcl::ModelCoefficients::Ptr coefficients1(new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers1(new pcl::PointIndices);
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  seg.setOptimizeCoefficients(true);
  seg.setModelType(pcl::SACMODEL_LINE);
  seg.setMethodType(pcl::SAC_RANSAC);
  seg.setMaxIterations(1000);
  seg.setDistanceThreshold(distance_threshold);
  seg.setInputCloud(cloud);
  seg.segment(*inliers1, *coefficients1);
  // line parameters
  double x0, y0, z0, a, b, c;

  x0 = coefficients1->values[0];
  y0 = coefficients1->values[1];
  z0 = coefficients1->values[2];
  a = coefficients1->values[3];
  b = coefficients1->values[4];
  c = coefficients1->values[5];
  std::cout << "model parameters1:"
            << "   (x - " << x0 << ") / " << a << " = (y - " << y0 << ") / " << b
            << " = (z - " << z0 << ") / " << c << std::endl;

  // extract segmentation part
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_line1(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::ExtractIndices<pcl::PointXYZ> extract;
  extract.setInputCloud(cloud);
  extract.setIndices(inliers1);
  extract.setNegative(false);
  extract.filter(*cloud_line1);

  // extract remain pointcloud
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_remain(new pcl::PointCloud<pcl::PointXYZ>);
  extract.setNegative(true);
  extract.filter(*cloud_remain);

  //显示原始点云
  pcl::visualization::PCLVisualizer::Ptr viewer_ori;
  viewer_ori = simpleVis(cloud);
  while (!viewer_ori->wasStopped()) {
    viewer_ori->spinOnce(100);
    std::this_thread::sleep_for(100ms);
  }

  pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));
  viewer->setBackgroundColor(0, 0, 0);

  viewer->addPointCloud<pcl::PointXYZ>(cloud_remain, "cloud_remain");
  viewer->setPointCloudRenderingProperties(
      pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "cloud_remain");

  viewer->addPointCloud<pcl::PointXYZ>(cloud_line1, "cloud_line1");
  viewer->setPointCloudRenderingProperties(
      pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "cloud_line1");
  viewer->setPointCloudRenderingProperties(
      pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.5, 0.5, "cloud_line1");

  while (!viewer->wasStopped()) {
    viewer->spinOnce(100);
    std::this_thread::sleep_for(100ms);
  }
}

void demo()
{
  // line parameters
  double x0 = -2, y0 = -2, z0 = 0, a = 1, b = 1, c = 0;
  auto line_pcd_create = create_line(x0, y0, z0, a, b, c);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_noise(new pcl::PointCloud<pcl::PointXYZ>);

  std::size_t noise_points_size = line_pcd_create->points.size() / 10;
  cloud_noise->width = noise_points_size;
  cloud_noise->height = 1;
  cloud_noise->points.resize(cloud_noise->width * cloud_noise->height);
  // add noise
  for (std::size_t i = 0; i < noise_points_size; ++i) {
    int random_num = line_pcd_create->points.size() * rand() / (RAND_MAX + 1.0f);
    cloud_noise->points[i].x =
        line_pcd_create->points[random_num].x + 10 * rand() / (RAND_MAX + 1.0f) - 5;
    cloud_noise->points[i].y =
        line_pcd_create->points[random_num].y + 10 * rand() / (RAND_MAX + 1.0f) - 5;
    cloud_noise->points[i].z =
        line_pcd_create->points[random_num].z + 10 * rand() / (RAND_MAX + 1.0f) - 5;
  }

  pcl::PointCloud<pcl::PointXYZ>::Ptr line_with_noise(new pcl::PointCloud<pcl::PointXYZ>);

  *line_with_noise = *cloud_noise + *line_pcd_create;

  fit_line(line_with_noise, 1);
}

int main(int argc, char* argv[])
{
  if (argc < 3) {
    std::cout << "please input parametars:\nfilepath\ndistance_threshold" << std::endl;
    demo();
    return -1;
  }
  std::string file_path = argv[1];
  double distance_threshold = atof(argv[2]);

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);

  if (pcl::io::loadPLYFile(file_path, *cloud) < 0) {
    std::cout << "can not read file " << file_path << std::endl;
    return -1;
  }
  std::cout << "point size: " << cloud->points.size() << std::endl;

  fit_line(cloud, distance_threshold);
  return 0;
}

8. 点特征提取

点特征的提取和线特征的提取原理一样

pcl::HarrisKeypoints3D<pcl::PointXYZ, pcl::PointXYZI> harris;
harris.setInputCloud(cloud); //设置输入点云 指针
harris.setNonMaxSupression(true);
harris.setRadius(0.6f); // 块体半径
harris.setThreshold(0.01f); //数量阈值

//新建的点云必须初始化,清零,否则指针会越界 
//注意Harris的输出点云必须是有强度(I)信息的 pcl::PointXYZI,因为评估值保存在I分量里 
pcl::PointCloud::Ptr cloud_out_ptr(new pcl::PointCloud); 
// 计算特征点 
harris.compute(*cloud_out_ptr);

参考文献

自动驾驶-激光雷达预处理/特征提取

PCL入门系列一——PCL简介及PCL安装 - 知乎

pcl教程(五)聚类_紫沐衙的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值