-
标题:A Multi-source Heterogeneous Point Cloud Fine Registration Method for Large-scale Outdoor Scenes
-
作者:Mengbing Xu, Xueting Zhong, Ruofei Zhong
-
单位:首都师范大学
0. 摘要
为全面表征大规模户外场景的三维信息,多平台、多传感器、多时相的激光点云采集与配准技术快速发展。然而受户外环境复杂性及观测平台硬件性能差异影响,空间坐标系不一致的多源异构点云在精确高效配准方面面临巨大挑战,包括显著噪声干扰、遮挡、数据缺失及几何异构性等问题。本文提出基于全连接图和热传导模型的异构点云精细配准方法:首先采用高斯概率分布框架对分类特征基元建立初始对应关系;继而通过低级语义关联与刚性变换相容性检测快速剔除异常值导致的误匹配;核心步骤是开发基于热传导模拟的同名点选择算法,为重叠有限且含离散噪声的点云候选对精确估计稳健对应关系,其有效性源于非线性热扩散拉普拉斯矩阵提供的空间局部几何结构与全局拓扑分布相似性度量;最后设计残差稳健损失函数加权的最小二乘模型,融合立面信息求解最优空间变换。多组真实场景数据集实验表明,本方法继承了基于几何配准策略的有效性与鲁棒性,实现多源异构点云边缘位置的精确融合,平均均方根误差低于0.06m。相较于现有先进配准方法(如VGICP、Teaser++等),本方法展现出卓越的配准性能,在精细三维重建等领域具有良好应用前景。
1. 算法框架与部分实验
1.1. 算法框架
本文方法的技术流程,包含三个核心步骤。首先采用主成分分析与方向向量一致性约束提取分类征基元(线状、地面、立面与簇状),从点云中捕获较低层次的语义信息;随后基于统一高斯分布概率框架建立初始对应关系,结合低层语义关联快速消除动态道路物体的干扰;在此基础上提出新型匹配点对选择算法,基于全连接图与非线性热传导模拟获取更准确有效的同名点对应关系;最后通过融合建筑物立面数据,构建多尺度加权最小二乘方法,利用高斯-马尔可夫参数估计求解最优空间变换,实现多模态异构点云的精确配准。

1.2. 部分实验结果
对比方法与本方法配准结果的旋转及平移误差。
对比方法与本方法配准误差的RMSE。
2. 总结
针对多源异源点云坐标系不统一问题,提出了一种基于全连接图与热传导模型的点云精细配准方法。该方法从点云中提取分类特征基元,通过联合底层语义关联、刚体变换兼容性校验及稀疏热分布矩阵的非线性扩散系数优化来筛选鲁棒对应匹配。进而基于立面特征构建鲁棒损失函数加权最小二乘模型,为计算最优变换提供更丰富的空间约束。大量对比实验表明,对于复杂城市场景,所提算法平均旋转误差和平移误差分别小于0.01∘和0.045m,RMSE均值低于0.06m。配准后的多源异源点云在地理实体边缘实现精准融合。相较于现有主流方法,本文为户外大尺度点云配准提供了可靠高效的全流程框架,在处理低重叠和异常噪声时表现出强鲁棒性。这保障了多时相地理实体坐标的基准一致性,对数字城市建设和基础设施管理应用具有重要参考价值。
在后续工作中,我们计划将所提方法扩展至无人机、地面固定站和手持激光扫描系统的多模态点云配准框架。点云配准技术在激光SLAM前端系统中具有关键作用。为进一步提升该方法在自主探索中的适用性,我们拟将其与现有主流激光SLAM技术框架相结合,构建轻量化的帧间匹配技术框架,旨在提升激光SLAM在隧道、矿井等高隐蔽性地下空间等复杂环境中的性能,进一步增强自主导航、定位与建图的精度。未来在这些主流研究方向上的探索,将为该方法在自动驾驶、搜救救灾等领域的应用拓展提供更广阔前景。