Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
题解:
看别人的。。
一种n次购买的很精巧的计算方法:
buy[i]是当前余额在i时买入之后最大所剩额度,sell[i]是在i时卖掉之后最大利润,多次遍历。
class Solution {
public:
int maxProfitWithNTrans(vector<int>& prices, int n) {
int l = prices.size();
if (l < 2) {
return 0;
}
vector<int> buy(n, 0), sell(n, 0);
for (int i = 0; i < n; i++) {
buy[i] = -prices[0];
}
for (int i = 1; i < l; i++) {
for (int j = 0; j < n; j++) {
if (j == 0) {
buy[j] = max(buy[j], -prices[i]);
}
else {
buy[j] = max(buy[j], -prices[i] + sell[j - 1]);
}
sell[j] = max(sell[j], prices[i] + buy[j]);
}
}
return sell[n - 1];
}
int maxProfit(vector<int>& prices) {
return maxProfitWithNTrans(prices, 2);
}
};