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Fig. 1. Our relightable facial appearance model supports renderings under novel viewpoints, expressions, and lighting conditions including nearfield lighting,
directional lighting, and environment lighting. Our model is also animatable and can be driven by images captured from cameras on head-mounted displays.

We present a method for building high-fidelity animatable 3D face models
that can be posed and rendered with novel lighting environments in real-time.
Our main insight is that relightable models trained to produce an image lit
from a single light direction can generalize to natural illumination conditions
but are computationally expensive to render. On the other hand, efficient,
high-fidelity face models trained with point-light data do not generalize
to novel lighting conditions. We leverage the strengths of each of these
two approaches. We first train an expensive but generalizable model on
point-light illuminations, and use it to generate a training set of high-quality
synthetic face images under natural illumination conditions. We then train
an efficient model on this augmented dataset, reducing the generalization
ability requirements. As the efficacy of this approach hinges on the quality
of the synthetic data we can generate, we present a study of lighting pattern
combinations for dynamic captures and evaluate their suitability for learning
generalizable relightable models. Towards achieving the best possible quality,
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we present a novel approach for generating dynamic relightable faces that
exceeds state-of-the-art performance. Our method is capable of capturing
subtle lighting effects and can even generate compelling near-field relighting
despite being trained exclusively with far-field lighting data. Finally, we
motivate the utility of our model by animating it with images captured from
VR-headset mounted cameras, demonstrating the first system for face-driven
interactions in VR that uses a photorealistic relightable face model.

CCS Concepts: « Computing methodologies — Virtual reality; Image-
based rendering; Neural networks.
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1 INTRODUCTION

Avatar creation has seen a notable increase in the use of learning-
based techniques in recent years [Lombardi et al. 2018; Nagano
et al. 2018; Schwartz et al. 2020] Traditional physically-inspired
methods [Seymour et al. 2017; Weyrich et al. 2006] require precise
geometry and reflectance, where costly and time-consuming manual
cleanup is typically needed. In contrast, learning-based methods use
general function approximators in the form of deep neural networks
to faithfully model the appearance of human faces. They can achieve
impressive realism with completely automated pipelines without
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relying on precise estimates of face geometry and material proper-
ties. They can also exhibit an efficient functional form that enables
real-time generation and rendering in demanding applications such
as VR [Lombardi et al. 2018], where classical ray-tracing methods
can be too computationally intensive [Weyrich et al. 2006].

Despite their many advantages, avatars created using learning
based techniques have so far been limited to a single lighting condi-
tion [Lombardi et al. 2018; Nagano et al. 2018]. For example, Lom-
bardi et al. build avatars that support novel viewpoints and expres-
sions, but their model is limited to the uniform lighting condition
under which the data was captured. Although there has been great
progress in learning-based relighting, existing methods are limited
to 2D images [Sun et al. 2019; Xu et al. 2018], static scenes [Sun et al.
2019; Xu et al. 2018; Zhang et al. 2020], or performance replay [Meka
et al. 2019], which are not suitable for generating dynamic render-
ings under novel expressions and lighting conditions (see Table 1).
This limitation has prevented the broader adoption of learning-based
avatars in game and film production, where consistency between
character and environment is essential.

In this work, we describe Deep Relightable Appearance Models
(DRAM), a learning-based method for building relightable avatars.
Our model supports rendering under novel viewpoints, novel ex-
pressions and more importantly, it can be rendered under novel
lighting conditions, where we can reconstruct complex visual phe-
nomena such as specularities, glints and subsurface scattering. We
build the relightable model from light-stage captures of dynamic
performances under a sparse set of space- and time-multiplexed
illumination patterns. Like [Lombardi et al. 2018], we train our
model using the variational auto-encoder framework [Kingma and
Welling 2013], which produces a well-structured latent space of
expressions that is suitable for animation. To avoid overfitting to
the lighting conditions observed during capture, we leverage the
additive property of light transport [Busbridge 1960] and generate
expression- and view-dependent textures for each light in the scene,
which are then fused with intensity-defined weights into the final lit
texture. Since the lighting information is fed at a later stage of the de-
coder network, instead of at its bottleneck, we call this model a late-
conditioned model. It affords generalization to completely unseen
lighting environments including both distant directional lighting
and real environment maps (Figure 1), and it exhibits smooth inter-
polation of point light sources despite the discrete set of 460 lights
used during capture. Finally, it can generate compelling near-field
illumination effects (Figure 8), which is particularly challenging for
a learning-based approach that exclusively uses data with distant
light sources.

Although late-conditioned DRAM (DRAMy) exhibits good gen-
eralization properties, its architecture is not suitable for real-time
applications, since each point light in the scene requires the gen-
eration of a light-specific texture. For natural environments, the
large number of illuminating directions make it computationally
prohibitive to generate. This limitation is shared by many previous
works [Debevec et al. 2000; Meka et al. 2019; Zhang et al. 2020].
However, we observe that early-conditioned deep neural networks
that input the desired lighting condition at the network’s bottle-
neck can exhibit enough capacity to model the span of a single
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. Free. Relightable Dynamic Animatable
viewpoint capture
Wenger et al.[2005] X v v X
Lombardi et al. [2018] v X v v
Xu et al. [2018] X v X X
Meka et al. [2019] X v v X
Sun et al. [2019] X v X X
Sun et al. [2020] X v X X
Zhang et al. [2020] v v X X
Meka et al. [2020] v v v X
Ours v v v v

Table 1. Feature comparison with previous methods. Ours is the only ap-
proach that enables a relightable and animatable model, in addition to free
viewpoint and dynamic expressions.

person’s illuminated facial appearances while being considerably
more efficient to evaluate.

The main drawback of early-conditioned models is their poor
extrapolation properties to unseen natural illumination conditions.
Thus, we use DRAM¢ to generate renderings of the face under a large
number of natural illumination conditions, which we then use to
train an efficient early-conditioned model, obviating the need for it
to extrapolate to those conditions during test time. We call this model
early-conditioned DRAM (DRAM¢) and propose a hyper-network
architecture for its representation. It comprises two components,
one network that takes the desired lighting condition as input and
predicts the weights for a second network that produces the view,
expression and lighting-dependent texture. Such a design further
increases the capacity of the network and results in renderings of
much higher quality while maintaining a low computational cost.
The result is a method for creating animatable faces that can be relit
using novel illumination conditions and rendered in real time. We
demonstrate a use case of our relightable model by live-driving it
from a VR-headset mounted camera [Wei et al. 2019] and rendering
under novel and varying illumination (Figure 1).

To summarize, the contributions of this work are:

e A method for generating high-fidelity animatable personal-
ized face avatars from dynamic multi-view light-stage data
that can be relit under novel lighting environments, including
challenging natural illumination and near-field lighting that
are far from what is observed during training.

o A student-teacher framework for training an efficient relight-
ing model that achieves real-time rendering while overcoming
generalization limitations typically exhibited by such models.

e A novel hyper-network architecture for early-conditioned
models that achieves significantly improved reconstruction
accuracy while remaining efficient to evaluate.

o The first demonstration of relightable faces driven by headset
mounted cameras for VR applications.

2 RELATED WORKS

Face modeling. Traditional methods for face modeling [Alexander
et al. 2009; Seymour et al. 2017] depend on precise 3D reconstruction
of human faces, which require a large amount of manual effort and



are not suitable for real-time applications. Recently Lombardi et
al. [2018] propose a data-driven method for face modeling. It applies
a conditional variational autoencoder to learn a latent represen-
tation for facial expressions and regresses a tracked mesh and a
view-dependent texture to model the appearance of human faces.
Schwartz et al. [2020] build on the same framework and explicitly
model human eyes for better eye contact. However, these meth-
ods are limited to a single lighting condition and do not support
relighting under novel lighting conditions.

Reflectance acquisition. To relight human faces under novel light-
ing conditions, previous approaches have tried to estimate the re-
flectance properties of human faces from captured images. Such
methods usually assume a simplified reflectance model based on
physical priors. Some previous works develop their method based
on the diffuse assumption for faces. Garrido et al. [2013] and Cal
et al. [2015] assume that faces are diffuse and jointly estimate the
diffuse albedo and facial geometry from monocular videos. Shu et
al. [2017] applies a learning-based method to infer facial normals
and albedo from a single image. Other works also model specular
reflections of human faces. Both diffuse and specular albedos are
estimated from captures with different acquisition setups such as
spherical gradient illuminations [Guo et al. 2019; Ma et al. 2007] and
multi-view captures under passive illumination [Gotardo et al. 2018].
Yamaguchi et al. [2018] applies a deep-learning based approach to
infer both reflectance and high-frequency displacement maps to
model mesoscopic surface details on human faces from a single RGB
image under uncontrolled illuminations. More complex reflectance
models that consider subsurface scatterings have also been applied.
Jensen et al. [2001] introduced a bidirectional surface scattering
model for human faces based on a dipole diffusion approximation
and proposed a method to measure the model parameters. Ghosh
et al. [2008] recover layered facial reflectance including specular
reflectance and scatterings at different layers from a set of twenty
photographs under environmental and projected illuminations. All
these physically-based approaches can only model a portion of face
appearances, and fail to faithfully reproduce the complex visual ap-
pearance of human faces, especially for dynamic animations, where
different expressions will result in significant differences in appear-
ance. In addition, rendering with such reflectance models under
complex lighting conditions also requires physically-based path
tracers, which is computationally expensive and not suitable for
real-time applications.

Image-based relighting. Methods in this category make use of
the linearity of light transport and synthesize renderings of the
scene under novel lighting conditions by combining images under
a set of basis lighting patterns. A category of these works focus
on the relighting of static scenes. Debevec et al. [2000] capture
the reflectance field of human faces by capturing images under a
dense sampling of directional incident illuminations. Xu et al. [2018]
propose a learning-based method to synthesize renderings of static
scenes at a novel lighting direction from a sparse set of captures. Sun
et al. [2019] train a network to directly regress the relighting results
under novel environment lightings from a single portrait image.
Their results have limited fidelity and cannot recover visual effects
such as specularities and detailed glints. In a later work [Sun et al.

Deep Relightable Appearance Models for Animatable Faces « 89:3

2020], they propose a method to increase the resolution of static
light stage captures and enable relighting under an arbitrary lighting
direction. Most of these methods require a static capture setup,
where the subject remains still and maintains a fixed expression
while a one-light-at-a-time (OLAT) capture is performed. This limits
their ability to capture transient expressions of the face in motion
required for building dynamic animatable face avatars.

In addition to the methods mentioned above, Wenger et al. [2005]
achieve dynamic relighting with time-multiplexed lightings where
the subject is illuminated with a rapid series of basis lighting pat-
terns. They warp adjacent frames to the target frame using optical
flow so as to relight the target frame, which suffers from poten-
tial misalignments due to inaccuracies in flow computation. Meka
et al. [2019] applies colored gradient illumination for efficient dy-
namic captures, and they train a network to infer the renderings
under an arbitrary lighting direction from two gradient illumination
captures, which are then used for relighting under novel lighting
conditions. Their method requires colored illuminations, and suffers
from misalignments between the two input captures. More impor-
tantly, while these methods support dynamic relighting, they can
only support playback and relighting of the captured frames, and
do not support animations and novel expressions.

Free-viewpoint relighting. Some existing works leverage 3D re-
constructions of the scene to enable free-viewpoint rendering of
the relightable models they build. Zhang et al. [2020] achieve free-
viewpoint relighting of static human captures by explicitly recon-
structing the geometry of the scenes and training a network to
synthesize texture-space RGB images under the desired view and
lighting direction. Gao et al. [2020] learn neural textures for the
coarse geometric proxies of static scenes and directly encode the
lighting information into rendered radiance cues with a set of basis
materials. While the usage of radiance maps enables rendering un-
der arbitrary lighting conditions, rendering radiance maps under
complex natural illuminations is time-consuming, making it not
suitable for real-time applications. Meka et al. [2020] propose a
network to regress dynamic textures of the underlying geometry
under an arbitrary lighting direction from color gradient captures.
However, they use per-frame reconstructions without correspon-
dence between the frames, restricting its use to performance replay.
We provide a detailed comparison of features between previous
methods and our method in Table 1. Compared to previous works,
our method is the first to support novel viewpoints, novel lighting
conditions, dynamic playback and animation.

3 DATA ACQUISITION

The appearance of human faces can be modeled as a function of the
facial expression, viewpoint and lighting condition. We propose to
use neural networks to approximate such a function. To supervise
the training of such a network, ideally we could capture image
data of all possible combinations of these three factors using a light
stage. Our capture system consists of 140 color cameras and 460
white LED lights. All the LEDs can be independently controlled with
adjustable lighting intensity. The cameras and lights are positioned
on a spherical dome with a radius of 1.1m surrounding the captured
subject.
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Fig. 2. Capture system with lights and cameras in a spherical dome (left)
and light patterns used during capture (right). We evaluate different spatial
groupings: one-light-at-a-time, 5 random lights, and spatial groups of 5 and
10 lights. Temporally, we sample lights using stratified random sampling.

To densely sample expression and viewpoint combinations, a
capture-subject is asked to make a predefined set of facial expres-
sions, recite a set of 50 phonetically balanced sentences, perform a
range-of-motion sequence, and have a short natural conversation
with a colleague [Lombardi et al. 2018]. During captures, all the 140
cameras synchronously capture at a frame rate of 90 frames per sec-
ond, and output 8-bit Bayer-pattern color images with a resolution
of 2668x4096.

The simultaneous capture of images with different lighting con-
ditions is much more challenging in comparison. Wavelength mul-
tiplexed approaches [Gotardo et al. 2015; Hernandez et al. 2007]
are limited in the frequency bands that can be used, while time-
multiplexed approaches [Wenger et al. 2005; Wilson et al. 2010]
present challenges in capturing dynamic content with transient
expressions. Our work follows the approach of Wenger et al. [2005],
where time-multiplexed lighting is captured by rapidly cycling over
a set of basis lighting patterns. However, instead of requiring static
expressions for each cycle, we rely on amortized inference [Kingma
et al. 2014] to disentangle lighting from expression in our captures
of the face in motion, and evaluate the suitability of different kinds
of lighting patterns for this approach. Specifically, we evaluate the
efficacy of OLAT, Random (i.e., spatially unstructured sets of 5 lights),
and two sets of Group patterns (i.e., spatially clustered groups of
lights); one with five lights and another with ten. The rank of the
basis formed by each lighting pattern ranges from 460 to 50. In all
cases, a fully-lit frame is interleaved every third frame to enable face
tracking [Wu et al. 2018] which produces a topologically consistent
mesh, M € R3%X7306 {5, every frame!. In discussions that follow, we
will use the following notation to refer to the lighting at a given
frame:

L ={by,by,...bn} (1)

where b; is the index of the i-th light that is turned on and n is the
total number of lights for that frame.

The choice of lighting patterns we consider in this work is guided
by a few factors that are difficult to meet simultaneously. First, it
is desirable to see many different facial expressions for each light-
ing condition. OLAT generates the most complete set of lighting
conditions with the finest spatial resolution, but has a long cycle

!In this work we presume the mesh between every third frame can be well approximated
by linearly interpolating its adjacent tracked meshes.
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time, minimizing the variety of facial expression seen in each light-
ing condition. Second, it is desirable to see many complementary
lighting conditions for each facial expression. To achieve this, we
temporally sample light directions using spatially stratified random
sampling: lights are first stratified into 8 groups (represented as grid
cells in Figure 2) with the next group chosen using furthest-group
sampling across consecutive frames, and the light direction chosen
randomly within a group. Third, it is preferable to have as much
light as possible to overcome the noise floor of our cameras. Random
and grouped lights trade off the spatial granularity of each lighting
condition, but increase the light available to the cameras, potentially
relaxing requirements on the capture system.

4 BUILDING RELIGHTABLE AVATARS

Our goal is to build personalized expressive face avatars that can
be rendered from novel viewpoints and relit to match the light-
ing in novel environments. We leverage the representation power
of neural networks to map viewpoint, expression and lighting to
highly accurate texture and geometry, which can be used to synthe-
size an image using standard rasterization techniques [Lombardi
et al. 2018]. To overcome challenges presented by dynamic capture
that are discussed in Section 3, we leverage the amortized inference
properties of conditional variational auto-encoders (CVAE) [Kingma
and Welling 2013] to disentangle expression from lighting in our
representation. However, a naive implementation of such an ar-
chitecture generalizes poorly to novel lighting conditions that one
might encounter in practice. This includes natural indoor and out-
door illumination conditions that can be quite different from the
point light patterns used during data capture. An example of such a
failure is illustrated in Figure 15. A key contribution of our work
is a two-stage system that enables efficient relightable models that
generalize to unseen lighting conditions to be learned.

The first stage of our system comprises a representation, DRAMp,
that achieves generalization by leveraging the additive property of
light. Although it is computationally expensive to evaluate, it allows
us to synthesize high fidelity face images under lighting conditions
that are far from what can be captured in our light stage. Thus, we
use DRAM, to generate a large number of high-quality synthetic
images to complement our real captured images, and to overcome
the need for the efficient neural network architectures used in the
second stage to extrapolate to those conditions.

Armed with an expanded dataset generated from the first stage,
the second stage of our system involves training a novel neural
network architecture, DRAM¢, with high capacity but low compute.
Here, we employ a hyper-network that produces lighting-specific
network weights of a standard deconvolutional architecture that has
previously been demonstrated to be capable of spanning the space
of expressions for a single lighting condition [Lombardi et al. 2018].
The resulting model attains real-time performance of 75 frames per
second on a Nvidia Tesla V100, and we demonstrate its suitability for
animation by driving it from headset-mounted cameras as discussed
in Section 5.

For all the models we describe in this section, we follow the data
preprocessing described in [Lombardi et al. 2018]. Specifically, im-
ages, I € R3x2668x409 of 5 specific frame and camera viewpoint,
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Fig. 3. Network architecture for our late-conditioned model. Expression and view-dependent features are generated with an encoder-decoder architecture,
and late-conditioned with in an MLP network to produce single-light textures, which can be modulated by light intensity and summed to produce textures

under more complex illuminations.

. . 2
whether real or synthetic, are unwarped into a texture, TeR3*1024"

using the tracked mesh, M, for that frame. We also calculate the
average texture, T, for fully-lit frames by averaging the texture at
each camera, which is used as input to CVAE to encourage better dis-
entanglement between viewpoint and latent space. Representative
visualizations of these elements are shown in Figure 3.

4.1 DRAM;y: A Late-conditioned Model

As shown in Figure 3, our late-conditioned model is a CVAE com-
prised of an encoder &, and a decoder Dy. The encoder takes the
tracked mesh, M, and the average texture, T, of its nearest fully-lit
frame as input and outputs the parameters of its variational distri-
bution, N, from which the latent code z € R® is sampled:

po—&MT) , z~N(u o). 2)

A Gaussian distribution with diagonal covariance is used for N.
The reparameterization trick [Kingma and Welling 2013] is used to
ensure differentiability of the sampling process.

The input to the decoder D, includes the latent vector z, the
view direction v of the camera relative to the head orientation in
that frame, and the lighting condition L, transformed to the head
coordinate system. The decoder outputs the reconstructed mesh M
and predicts the textures corresponding to each single light in L,
which sum up to produce the final texture T. The decoder consists
of two branches: the geometry branch, G,, which takes the latent
vector as input and predicts the mesh, and the texture branch, 7z,
which additionally conditions on viewpoint and lighting to produce
texture: .

M=Gi(z) ., T=7(zv.L). ®)
Our texture branch consists of three components; a feature network
¥, a warping network ‘W, and an OLAT prediction network O. The
feature network and the warping network output view-dependent
feature maps, and the OLAT network takes per-texel features and a
single lighting direction as input to predict the lighting-dependent

colors at each texel. Finally we combine the colors under each light
weighted by the lighting intensity to reproduce the texture. Please
refer to Figure 3 for an illustration of our architecture.

Feature network. The feature network takes the latent vector, z,
and view direction, v, as input and outputs a 64-channel feature
map of size of 512 X 512:

C=%(zv) (4)

This feature map serves as a spatially varying encoding of expression
and viewpoint across all lighting conditions.

Warping network. The warping network outputs a view-dependent

warping field, W € R2X1024" \hich is applied to the feature map, C,

Ce R64><10242

resulting in a warped feature map, , of the same size

as the texture:

W=W(zv) , C =¢(CW), (5)

where ¢ denotes the warping operator, which performs bilinear in-
terpolation at floating point coordinates. The warping field accounts
for texture sliding as a result of view-dependent effects stemming
from imperfect geometry, most noticeable around the mouth, eyes
and hair, where accurate geometry is difficult to estimate during
mesh tracking. It is also used to upscale the lower resolution feature
maps, whose size is constrained by memory limitations on modern
GPU hardware.

OLAT network. Given the warped feature map, C, O is applied to
each texel independently, where it predicts the color of that texel
under a given lighting direction. O is a multi-layer perceptron (MLP)
that, for a texel k and a light b; with position 1;,, takes as input Cr,
the 64-dimensional feature of C at texel k, as well as the direction
of light with respect to the corresponding point on the face in 3D.

Different from previous works (e.g., [Meka et al. 2019]) which
assume distant lighting and where all texels share the same lighting

ACM Trans. Graph., Vol. 40, No. 4, Article 89. Publication date: August 2021.
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direction, we calculate the lighting direction of each texel using
the light position and the corresponding position of the texel on
the reconstructed geometry, M. This better models the setting in
our light-stage, whose 1.1m radius results in some non-negligible
foreshortening effects.

One of the most distinctive appearance change on faces is shadow
by self-occlusion. While our late-conditioned model allows us to
learn appearance change in a localized manner, we observe that it
remains challenging for such a model to learn clear shadow bound-
ary due to the lack of geometric information, resulting in noticeable
artifacts. To alleviate this issue, we exploit the predicted geometry,
M, to encode geometric relationship between a light source and a
texel in the spirit of a shadow map [Williams 1978] as an additional
input to O. Specifically, for a texel, k, and its corresponding 3D
position, pg, we calculate the difference between the depth of pg
and its nearest occluder along the ray from the light to the texel in
the light coordinate frame. With this, we arrive at the final form for
our OLAT network:

(k) = 0 (Cpo d, 57 (©)

where dii is the lighting direction of light b; for texel k, and sZi is
the depth difference mentioned above. Applying the OLAT network
to each texel gives us the full texture TP under the current view
direction and lighting, b;.

Each frame of our training data is captured under multiple lights,
and we approximate the training textures by the weighted sum
of textures generated for each light independently, using weights
that reflect the intensity of each light. Given the preset lighting
intensity ybi for a light b;, our final predicted texture is constructed
as follows:

n
T= Z Pt ™)
i=1

Training. Our loss function consists of four terms, including a
texture reconstruction loss #r, a geometry reconstruction loss £, a
regularizer loss on the warping field £ and a latent space regular-
izer {z:

L(Ep, Dy) = Z Artr + Apmty + Awbw + Aztz,  (8)
v,t

where (v, t) are the camera and frame indices over the dataset, and:

tr=|lwo (T-T)|} ©)
£y = ||IM - M]3 (10)
by = ||W - Wi} (11)
tz =KL(N(p, o) || N(0,1)) (12)

Here, w is a weight map that avoids penalizing self-occluded texels
in the current view?. The term W is an identity warping field, and
the regularizer loss £y prevents the warped texel positions from
drifting too far from their original positions. The KL-divergence
loss ¢z with a standard normalization encourages a smooth latent

2We have omitted indexing the variables with v and ¢ in our equations to reduce
notation clutter, but they should be understood to correspond to unique values for
every frame and viewpoint in the dataset.
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space. In all our experiments we set the weights of each loss term
as At = LAy = 0., Ay = 10,Az = 0.001. We use the Adam
optimizer [Kingma and Ba 2014] with a learning rate of 0.0005 for
training. We train the networks on 4 Nvidia Tesla V100 GPUs with
a batch size of 16 for about 300k iterations, which takes 4-5 days on
average.

Testing. Our model provides great flexibility and generalization
for rendering under novel lighting conditions. We can feed in an arbi-
trary lighting direction for each texel as input to the OLAT network
O, and predict the texture under the desired lighting conditions.
Therefore, our model supports the rendering of directional light-
ing (Figure 7) as well as near-field lighting (Figure 8), which is not
previously possible using existing image-based portrait relighting
methods [Meka et al. 2019; Sun et al. 2019; Zhang et al. 2020]3. For
complex lighting conditions like environment maps, we can predict
textures for every single pixel in the environment map, and linearly
combine them to synthesize a face image in that environment. The
model’s runtime comprises: 24ms for shadow map calculation, 29ms
for feature map generation, and 0.9ms for full texture decoding of
a single lighting direction on a single Nvidia Tesla V100 GPU. Al-
though feature map generation needs to be computed only once, the
shadow map and texture decoding need to be performed for each
light in the environment. So, although single light rendering using
DRAM;y can be relatively fast (i.e., ~ 55ms), even a low-resolution
(16 x 32)-environment map can take ~ 18 seconds.

4.2 DRAM¢: An Early-conditioned Model

Our late-conditioned model allows us to synthesize face images un-
der novel expressions, viewpoints and lighting conditions. However,
it is computationally expensive to evaluate for complex lighting
conditions with many light sources. Unfortunately, most natural
illuminations exhibit this property. Hence, they are typically mod-
eled using an environment map, which is equivalent to having as
many light sources as there are non-zero pixels in the map. Thus,
this model is not suitable for interactive applications, such as VR,
where real-time performance is necessary. In this section, we build
on top of results from the late conditioned model described in the
previous section to arrive at a formulation with similar accuracy,
but that is an order of magnitude more efficient.

Data generation. We use DRAM, to generate face renderings
under environment maps captured from real indoor and outdoor
scenes, and use the generated textures as ground truth to supervise
the training of our early-conditioned model; DRAMc. For the set of
environment maps to render, we use the large-scale dataset collected
by Gardner et al. [2017] and Sun et al. [2019], which contains 3094
high-resolution HDR environment illuminations including both
indoor and outdoor scenes. We randomly select 2560 environment
maps from the dataset for training and use the remaining 534 for
testing.

We generate these synthetic lighting images for randomly sam-
pled frames and viewpoints from our light stage capture. During

3For nearfield lighting we employ a quadratic fall-off for lighting intensities used in
the weighted sum in Equation 7.
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Fig. 4. We apply a hyper-network architecture for our early-conditioned
model, where we use a separate network H that takes the current environ-
ment map as input to predict the weight and bias of the texture decoder
Te.

rendering, we randomly select an environment map from the train-
ing dataset and apply a random rotation of [0°,360°] in longtitude
and [-30°,30°] in latitude, followed by downsampling to a (16x32)-
sized lat-long environment map. The resized environment map is
further normalized by dividing by its sum and multiplying by a
constant a € [6, 12]. We denote the environment map as e. DRAM,
is applied to predict the textures for each lighting direction, which
correspond to individual pixels in the environment map, and per-
form the weighted sum in Equation 7 to produce the final texture T¢.
In total, we generate 1.2M ~ 1.8M textures for training each subject
in our dataset. In addition to environment map renderings, we also
augment our training data by rendering the captured subject under
1 -5 lights randomly selected from the 460 lights. During training,
we project the selected lights onto an environment map of 16 X 32
and use them as input to our network to predict the corresponding
textures.

Network architecture. Our early-conditioned model exhibits a sim-
ilar CVAE architecture as its late-conditioned counterpart, compris-
ing an encoder, &, and a decoder, D¢. The encoder, &, shares the
same architecture and input as &, and outputs a latent vector, z.
The decoder also consists of two branches; a geometry decoder, G,
with the same architecture as Gy, and a texture decoder, 7¢, that
predicts a texture under the given environment map.

As shown in Figure 4, a naive architecture for the texture decoder
would be an extension of [Lombardi et al. 2018], where the vector-
ized environment map is concatenated with the latent vector, z, and
view direction, v, and fed into to a single deconvolutional network
to output the predicted texture, Te. As this network architecture is
designed for speed, it lacks the capacity to accurately reconstruct
data that spans a large number of different environment maps. To do
this, a straight-forward approach would be to increase the channel
size in the hidden layers of the network. However, as we will show
in Section 6.2, a considerable increase is required to achieve reason-
able accuracy, which diminishes the model’s efficiency, making it
unsuitable for real-time applications.
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Our early-conditioned model takes inspiration from recent works
on hyper-networks [Ha et al. 2016], and consists of two networks:
a weights network, #, that takes the environment map as input
and predicts the weights for a second network, 7¢, that takes the
efficient form used in [Lombardi et al. 2018], and produces a view,
lighting and expression dependent texture:

0 — H(e) , T°=7:(zv|O). (13)

© denotes the weights of 7¢ that consists of 8 transposed convo-
lution layers. For each layer, we use a small weights network that
consists of 5 fully connected layers to predict the convolutional
kernel weights and biases. Similar to the late-conditioned decoder,
a warping field is employed on the output of the texture decoder to
give us the final texture. The hyper-network architecture specializes
the texture network to a specific lighting condition, which we find
to be effective in improving reconstruction performance without
substantially increasing computational cost, as shown in Figure 15
and Table 5.

Training. We use all the same settings for training DRAM, as
we did for DRAMy. For the same number of iterations, a model can
be trained within 3 — 4 days on average. The trained model can
synthesize face images lit by environment maps within 13ms (~75
frames per second), making it suitable for interactive applications,
including demanding real-time applications such as VR.

5 ANIMATING RELIGHTABLE AVATARS

The trained early-conditioned decoder D¢ can efficiently generate
novel outputs with respect to its three inputs: expression, view-
points, and lighting. The disentanglement of these factors in the
model are important for animation, because the images coming
from driving sensors can have completely unrelated viewpoints
and lighting to the decoded avatar. For example, in the VR telep-
resence system of [Wei et al. 2019], the driving signal comes from
headset-mounted IR cameras that observe facial expressions of a
person wearing the headset in an arbitrary room, while being lit
by headset-mounted IR lights, whereas the avatar that person is
driving needs to be relit in accordance with the virtual scene, which
might be arbitrarily different from where the person really is. The
only factor that is desirable to match between the sensor images
and the avatar, is the facial expression.

In this work, we utilize the method in [Schwartz et al. 2020],
which finds correspondences between input headset images and
expression codes z of DRAM, through analysis-by-synthesis. We
similarly learn a regressor that encodes multi-view headset images
into z and a relative pose between the headset and avatar, jointly
with a style transformer that accommodates for domain differences
between the headset images and the rendered avatar. An important
difference here, is that we assume the lighting variation in the sensor
images is small enough so that we can fix the lighting input, e, at a
constant uniform lighting. Any difference in lighting between the
domains is handled by the style transformer. While this assumption
holds in many cases, as shown in Section 6, an interesting future
direction is to leverage our model’s relighting capability and jointly
optimize the model’s lighting so that there is less reliance on the
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Ground truth Ours Ground truth

Ours Ground truth Ours

Fig. 5. We show comparisons between the predicted OLAT images under novel viewpoints and expressions with our late-conditioned model and the ground
truth. Our model is able to reconstruct the OLAT images accurately, even though it is trained only on group-light captures. This enables us to synthesize
accurate renderings under novel lighting conditions by combining multiple OLAT predictions.

Fig. 6. Late-conditioned model: rendering under novel directional lights.

style transfer module, which can introduce semantic shifts during
optimization.

6 RESULTS

In this section we provide qualitative and quantitative evaluations
on different components of our method, including both the late-
conditioned model (Section 6.1) and the early-conditioned model
(Section 6.2). We perform ablation studies on each model to validate
our design choices. We show relighting results with our models
under novel lighting conditions, viewpoints, and expressions. We
also demonstrate our relighting results animated by images captured
with VR headset mounted cameras (Section 6.3).

6.1 Evaluation of Late-conditioned Models

As discussed in Section 2, none of the previous works support both
free-viewpoint relighting and animations, as in our method. The

ACM Trans. Graph., Vol. 40, No. 4, Article 89. Publication date: August 2021.

work that is closest to ours is Meka et al. [2020]. However, their
model is not animatable and requires color gradient illuminations as
input. Therefore, in this section we focus on showing our qualitative
results and validating different design choices in our system. We
train the model for each subject on captures under group-light
patterns, and the two subjects shown in Figure 5 are captured with
the Group-5 pattern while the other subjects are captured with
Group-10.

Qualitative results. We first compare our renderings to ground
truth captures under novel viewpoints, expressions, and lighting
conditions. To achieve this, we evaluate our model on a separate
sequence of images captured using a similar acquisition setup as
described in Section 3 except that each frame in this sequence is
captured under a single light. We make the comparison on images
captured at a set of 4 validation viewpoints that are not used in
training. As shown in Figure 5, although our model is trained on
images captured under group-light patterns and has never seen
OLAT captures during training, our network can successfully re-
construct high-fidelity OLAT images that closely approximate the
ground truth captures in terms of shadows and specularities. This
demonstrates that our proposed model can not only generalize to
novel expressions and viewpoints, but also effectively super-resolve
the group-light captures.

Figure 6 shows renderings with our model under novel directional
lights. By combining the renderings under each pixel lighting of
an environment map, our model can also achieve photorealistic
renderings under environment lighting. Figure 7 shows environment
map renderings with our model under both outdoor and indoor
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Fig. 7. Renderings under environment maps with our late-conditioned model. Our model is able to faithfully recover complex shading effects including

specularities and shadows.

Fig. 8. Nearfield relighting with our late-conditioned model. Our late-

conditioned model can take different lighting directions for each texel
and predict their colors, which enables us to achieve efficient nearfield
renderings making use of the geometry reconstructed with our geometry
decoder.

environment maps. Our model can faithfully recover the glints on
the forehead and the specularities on the face.

Figure 8 shows our rendering results under near-field lighting.
We make use of our reconstructed geometry output by the geometry
decoder to calculate the lighting direction of each texel. Since our
OLAT prediction network O is applied on each individual texel, our
model can predict the OLAT renderings with a single inference. In
comparison, previous methods [Meka et al. 2019; Sun et al. 2019;
Xu et al. 2018] do not reconstruct the geometry and therefore fail
to support near-field lighting. While some other methods [Meka
et al. 2020; Zhang et al. 2020] build on estimated geometry, their
network can only take a single lighting direction as input at each
time. To predict near-field rendering, separate evaluations of their
model for the lighting direction of each individual pixel would be
required, which is very time-consuming. In contrast, our model
provides greater flexibility and more efficient near-field renderings.
For more results, please refer to the supplementary video.

Evaluation of design choices. To validate our different design
choices, we evaluate our models on testing sequences for Subject
1 and Subject 2 and compare them to the ground truth. Both sub-
jects have two testing sequences. The testing sequences for Subject

Ground truth Ours

w/o depth difference

Fig. 9. We make use of the shadow mapping technique to feed self-
shadowing information to the network. We can see that without the depth
differences, the rendering results suffer from jagged boundaries at shadows.
In contrast, our full model reproduces more accurate shadows.

Subject 1 Subject 2
MSE (x10™%) SSIM MSE (x10™%) SSIM
Our full model 6.4377  0.9363  2.9843  0.9469

w/o depth difference ~ 6.5115 0.9344 3.0562 0.9464

Table 2. We evaluate the effectiveness of using depth differences as input to
the OLAT network in our late-conditioned model on two subjects. Subject
1 and Subject 2 correspond to two subjects in Figure 5 respectively, The
results on both subjects show that involving the occlusion information helps
improve the accuracy of our model.

1 consists of 18014 and 34432 frames, and the sequences for Sub-
ject 2 have 17165 and 23072 frames. There are 4 testing images
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Ground truth Group-5

OLAT Random

Fig. 10. Late-conditioned model: a visual comparison of different capture lighting patterns. The leftmost image shows a ground truth image under an “OLAT”
single point-light illumination. We reconstruct this using a model trained on 5 spatially clustered lights (“Group-5”), OLAT, and 5 spatially random lights
(“Random”). Both “Group-5” and “random” can use shorter camera exposures than OLAT to achieve similar camera intensities, but only “Group-5” recovers

comparable details to OLAT.

for each frame captured at novel viewpoints that are not used in
training. All numbers are reported on the first sequence except for
those in Table 3. We consider image-space error metrics including
mean-squared error (MSE) and structural similarity index (SSIM).
Considering the fact that the ground truth OLAT images with our
models may have different lighting intensity than the predictions,
and there are potential color mismatches due to different camera
calibrations, we optimize a matrix Q € R3*3 to align our predicted
image I to the ground truth I:

Q = arg min]|Q - 12 (14)
Q

Then we calculate all error metrics between Qf and I.

In Table 2, we perform an ablation study to show the effectiveness
of applying depth differences as input to our OLAT network. From
the result we can conclude that it helps improve the accuracy of the
model. We provide additional qualitative comparisons in Figure 9. As
we can see from the figure, without including the depth difference
information, the network predicts shadows with incorrect shapes
and jagged boundaries, especially for long-range shadows on the
neck. In contrast, our full model with depth differences produces
more accurate shadows.

Effect of spatial light pattern. In Table 3, we make a comparison
between different lighting bases for our time-multiplexed lighting.
We train our late-conditioned models on captures under different
lighting bases including OLAT, Random, and Group-5. We make the
comparisons by predicting the OLAT images under novel expres-
sions and viewpoints and calculate the error between the predictions
and their corresponding ground-truth OLAT captures. A visual com-
parison is also shown in Figure 10. From the results we can see
that Group-5 captures lead to slightly better reconstruction accu-
racy than random lighting patterns. Compared to OLAT, Group-5
achieves very similar performance despite the model never having
seen OLAT images during training, and using an evaluation design
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Ground truth

Dynamic capture Static capture

Fig. 11. We show visual comparisons between renderings on novel expres-
sions with our late-conditioned model trained on static captures and dy-
namic captures. Static captures cover many fewer facial expressions than
dynamic captures within the same number of frames, thus resulting in poor
generalization to novel expressions.

that is favorable to OLAT captures. Compared to OLAT, grouped
light captures have reduced single-light maximum power require-
ments (to overcome the noise floor of the cameras), or, equivalently,
support capturing with shorter exposure times (which has impli-
cations for perceptual discomfort [Wenger et al. 2005]). This result



Subject 1 Subject 2
MSE (x10™%)  SSIM  MSE (x10™%)  SSIM
OLAT 6.7205 0.9843 3.866 0.9931
Random 6.7588 0.9840 4.124 0.9930
Group-5 6.5536 0.9842 3.676 0.9933

Table 3. We compare the performance of our models trained on captures
under different basis lighting patterns. We do the evaluation by comparing
the predicted OLAT images under novel viewpoints and expressions to
their corresponding ground-truth. From the result we can see that the
performance of Group-5 capture is much better than random light patterns.
The Group-5 capture is even better than the OLAT captures on 3 out of 4
metrics although it has never seen OLAT images in training. Note that this
evaluation is done on a different testing sequence from that used in Table 2.

Subject 1 Subject 2
MSE (x107%) SSIM MSE (x10™%) SSIM
Static capture 7.5862 0.9301 3.6335 0.9429
Dynamic capture 6.4377 0.9363 2.9843 0.9469

Table 4. Late-conditioned model: comparison between static captures and
dynamic captures. Within the same number of frames, dynamic captures
can cover more facial expressions and lead to better generalization to novel
expressions, thus achieving higher accuracy.

indicates that grouping lights in spatial clusters is an attractive op-
tion for power or exposure constrained settings, with results almost
indistinguishable for groups with a diameter twice the size of the
single-light spatial sampling distance.

Effect of capture script content. We also compare a dynamic cap-
ture script with a static expression capture script of roughly the
same total duration. For static captures, the subject is asked to re-
main still during each elicited expression, while a full cycle of the
light patterns is captured. Each individual expression is therefore
fully sampled along all spatial lighting directions. Conversely, for
the dynamic capture, the subject is asked to move naturally, and
the allotted capture time is used to elicit more varied expressions
and poses. Instantaneous expressions are therefore sampled very
sparsely along lighting directions, but a more diverse set of facial
expressions is sampled, and we rely on amortized inference dur-
ing model building to span the combined space of expressions and
lighting directions. We capture roughly the same number of frames
for these two kinds of captures. From the result in Table 4, we can
see that our dynamic captures produce better results than static
captures. Specifically, within the same number of frames, static cap-
tures cover a much smaller set of expressions than our dynamic
captures. Therefore, as we can see in Figure 11, the model trained
on static captures does not generalize well to novel expressions. In
contrast, our dynamic captures provide us a more efficient way to
capture the subject under a large number of expressions.

6.2 Evaluation of Early-conditioned Models

Qualitative results. In Figure 12, we show the rendering results
with our early-conditioned model under novel environment maps,
expressions and viewpoints. Because we are using the late-conditioned

Deep Relightable Appearance Models for Animatable Faces « 89:11

model to supervise the training of the early-conditioned model, we
regard the renderings with the late-conditioned model as the ground
truth. From the results, we can see that our early-conditioned model
can generate photorealistic results with accurate texture details and
shading effects that closely resemble its corresponding ground truth.
Such results demonstrate that by extensively sampling the natural
illuminations and generating renderings as training data, our early-
conditioned model is able to achieve good generalization to novel
lighting conditions.

Our early-conditioned model benefits from the training data aug-
mentation with renderings under environment maps generated from
projections of randomly chosen directional lights, it can therefore
also generate compelling results on environment maps with high-
frequency lighting, which are usually under-represented in existing
environment map datasets. In Figure 13, we show our renderings
under an environment map generated by projecting a single direc-
tional light onto the environment map. The results show that our
early-conditioned model can generalize to high-frequency illumina-
tions and generate accurate renderings that are comparable to the
late-conditioned model.

We also compare to the state-of-the-art single image portrait
relighting work of Sun et al. [2019]. To achieve this, we directly
feed the ground truth fully-lit captured image as input to their
method and compare their renderings to the predictions of our
early-conditioned model. We use the code and model provided by
Sun et al. to generate the results. From the results in Fig. 14, we can
see that the method of Sun et al. fails to predict faithful shading
effects such as specularities, and generates overly flat renderings.
In contrast, our method produces renderings with higher fidelity.

Evaluation of design choices. To validate different design choices
of our early-conditioned model, we evaluate our model and the
comparison models on a separate testing sequence with novel ex-
pressions. We generate renderings with the models at a set of 4
novel viewpoints under environment maps randomly chosen from
the testing dataset. The corresponding ground truth renderings are
generated with our late-conditioned model. We also compare the
renderings of different models on a testing sequence under group-
light patterns to the ground truth group-light captures. To achieve
this, we project the group-light patterns to environment maps and
use them as input to the models. For both lighting conditions, the
number of testing frames is 10884 for Subject 1 and 13664 for Subject
2. We apply the same error metrics as used in Section 6.1, and report
the scores in Table 5. We also report the computational cost of the
texture module by calculating the number of multiply-accumulate
operations (MACs) for a single inference. We also show a visual
comparison between our model and the baseline models in Figure 15.

From the results, we can see that the naive decoder with fixed
weights has low accuracy and generates incorrect colors on faces. In
comparison, our hyper-network architecture produces more accu-
rate renderings while maintaining a comparable computational cost.
We also compare against a baseline model with twice the number of
feature channels, and our hyper-network is able to achieve better
performance with a much smaller computational cost.

Instead of training on environment map renderings generated
with our late-conditioned model, we also compare against a model
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Fig. 12. Our early-conditioned model is able to generate renderings under novel environment maps that have the same quality as those generated by the
late-conditioned model. Compared to the time of around 18 seconds required by the late-conditioned model, our early-conditioned model is much more
efficient and can generate environment map renderings in real time.

Test on environment renderings Test on group-light captures MACs (x10%)
Subject 1 Subject 2 Subject 1 Subject 2
MSE(x1074) SSIM MSE (x107%) SSIM | MSE(x107%) SSIM MSE(x10™%4) SSIM
Single decoder 11.396 0.9815 3.6423 0.9885 7.5256 0.9833 3.7622 0.9937 1.44
Single decoder (x2 features) 8.7349 0.9862 2.6697 0.9909 7.2872 0.9838 3.5373 0.9938 5.53
Ours (trained on group-light) 108.93 0.9277 61.221 0.9417 6.2536 0.9846 3.0830 0.9937 1.50
Ours 7.3878 0.9882 2.5309 0.9914 7.4345 0.9838 3.5846 0.9938 1.50

Table 5. We compare our early-conditioned model with hyper-networks against baseline models. Compared to the naive model that applies a single decoder
network with fixed weights, our hyper-network is able to achieve much better accuracy with similar computational cost. Our model is even comparable to the
naive decoder model with twice as many feature channels at each layer, which has a much larger computational cost. In addition, from the figure we can see
that while the model trained on group-light captures only can predict accurate group-light renderings, it fails to generalize to novel environment maps, which
demonstrates the necessity of our two-stage student-teacher framework.

it can produce renderings with the highest accuracy on a testing set
of group-light sequences, it produces the lowest accuracy on the
environment renderings. Training only on the group-light captures
makes the network overfit to the training lighting patterns and fail
to generalize to novel environment lighting (see Figure 15, right).
In contrast, by training on renderings with our late-conditioned
model under extensively sampled natural illuminations, our hyper-
network can generalize to novel environment illuminations, which
demonstrates the necessity and effectiveness of our two-stage frame-
work.

Late-conditioned model

Early-conditioned model

Effect of the environment map resolution. Theoretically, it is possi-
ble to generate training data under environment maps of an arbitrary
resolution with our late-conditioned model. However, increasing
the environment map resolution results in significantly more time
for training data generation. In Figure 16, we compare rendering
under environment maps with different resolutions with both the
late-conditioned model and the early-conditioned model. The results
show that a resolution of 16 X 32 has been able to well reproduce the

Fig. 13. Our early-conditioned model can generate photorealistic renderings
under high-frequency environment lighting. Here we make a comparison
between renderings with our early-conditioned and late-conditioned models
under an environment map representing a single directional light. Our
early-conditioned model can produce renderings of the same quality as the
late-conditioned model.

that is only trained on our group-light captures by projecting the
group-light onto environment maps and training the same hyper-
network model on this dataset. From the table, we can see that while
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complex lighting effects with no obvious artifacts, which motivates
us to use such a resolution in our experiments to balance between
the time for data generation and the rendering quality.
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Ours [Sun et al. 2019] Ours [Sun et al. 2019] Ours [Sun et al. 2019]

Fig. 14. We compare our early-conditioned model to the state-of-the-art single image portrait relighting method of Sun et al. [2019]. From the results we can
see that the method of Sun et al. fails to recover accurate specularities on the face and eyes, produces softer shadows, and predicts incorrect colors. In contrast,
our method can achieve much more photorealistic relighitng.

?

Late-conditioned model

SSIM:0.6542 MSE: 118.92x10*
Ours (group-light training)

SSIM:0.9755 MSE: 1.80x10*
Single decoder (x2 features)

SSIM:0.9806 MSE: 1.37x10* SSIM:0.9730 MSE: 3.01x10*
Ours Single decoder

Fig. 15. We compare our early-conditioned model with hyper-networks against baseline models with a single decoder. Our hyper-network generates results of
higher quality that better match the ground truth compared to baseline models. We also compare against a model that has the same architecture as ours but
is trained on group-light captures only, and the result shows that such a model fails to generalize to novel lighting conditions. Instead, our models that are
trained on environment map renderings with our late-conditioned model achieve better generalization, which demonstrates the effectiveness and necessity of
our two-stage student-teacher framework.

6.3 Animation from Headset Mounted Cameras relit under novel lighting conditions. For more results, please refer

The advantage of our relightable appearance model over previous to the supplementary video.

works is the good disentanglement of its inputs: facial expression,

viewpoints, and lighting. This makes the model animatable, and can
be driven by sensors such as video captured by VR headset mounted
cameras. In Figure 17, we show our early-conditioned model re-
lighted in different environment, given the latent values z we ex-
tracted from the given headset images, using the method described
in Section 5. The renderings of our model faithfully reproduce the
facial expressions from the headset images, while photorealistically

6.4 Limitations

While our models produce photorealistic relightable avatars, several
limitations remain: (1) Most notably, in regions where the tracked
mesh is inaccurate or lacks sufficient geometric detail, such as the
hair outline and eyelashes, textured mesh rendering produces jar-
ring border artifacts instead of blending into the environment back-
ground. For example, in Figure 10, our model fails to reconstruct the
shadows caused by eyelashes. This could potentially be addressed
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Late-conditioned: 32x64 Late-conditioned: 16x32 Late-conditioned: 8x16

Late-conditioned: 64x 128

Late-conditioned: 128x256 Early-conditioned: 16x32

Fig. 16. We evaluate the quality of renderings under environment maps with different resolutions. We use the rendering under a 128 X 256 environment map
with our late-conditioned model as ground truth, and compare the renderings under lower-resolution environment maps with both early- and late-conditioned
models. Each comparison image has an inset on the bottom left to show the squared difference from the ground truth. From the result we can see that a
resolution of 16 x 32 has been able to properly reproduce the complex shading effects on the face, while a resolution of 8 X 16 results in obvious artifacts.
In our experiments we use environment maps with a resolution of 16 X 32 for our early-conditioned model to balance between the time for training data

generation and the rendering quality.

Input images

Our rendering

Input images

Our rendering Input images Our rendering

Fig. 17. Our early-conditioned model under novel environment maps animated by VR headset mounted cameras. Our model is able to faithfully reproduce the
expressions in the headset captures while achieving photorealistic relighting simultaneously.

via volumetric neural rendering approaches with the capacity to pro-
duce translucency. (2) Similarly, we notice some blurring in regions
where the mesh geometry does not accurately track the surface,
such as the mouth and eyes. Using specialized geometric models for
these regions (e.g., [Bérard et al. 2019; Wu et al. 2016]) would greatly
improve registration accuracy and therefore reduce the capacity
required to model their appearance in texture space. (3) Very high
frequency details (e.g., pores and strong specularities) are slightly
blurrier in the rendered images, as shown in Figure 5. This can be po-
tentially alleviated by increasing the network capacity and texture
resolution. (4) Our models are limited by the acquisition hardware
and lighting rig used to capture the training data. Due to the use
of low-dynamic range 8-bit images, we notice decreased quality
and color shifts in very dark regions, likely due to poor signal to
noise ratio. Similarly, our model fails to reconstruct lighting direc-
tions that are very far from those that can be elicited by the light
stage (e.g., lighting directly below the participant). High bit-depth
HDR imaging and more complex light stage setups could improve
results in these cases. (5) Finally, we have presented an efficient
model for rendering animatable and relightable avatars in realtime
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in environmental illumination, but designing an efficient model that
can render both nearfield and farfield illumination remains an open
problem.

7 CONCLUSIONS

We presented Deep Relightable Appearance Models, a novel two-
stage framework to achieve photo-realistic relighting of animatable
face avatars. Our approach produces, for the first time, a photo-
realistic face avatar that can be driven and rendered in real-time
under various new illuminations. The experiments demonstrate
that our late-conditioned model achieves high generalization across
a wide-range of illuminations including natural indoor/outdoor
illuminations, nearfield lighting, and distant directional lighting,
despite being trained only with grouped point-light captures. This
is possible due to the explicit modeling of the linear property of
light transport and the late-stage fusion of light information in our
network architecture. We further examined the effects of different
light patterns and captured scripts, and show the efficacy of dynamic
capture and spatial grouping of light sources. This allows us to ren-
der high-quality synthetic images under different illuminations to



generate an augmented training set for training efficient models. We
also presented a hyper-network architecture for early-conditioned
relightable models, which is highly efficient to run in real-time
while showing comparable fidelity to a higher-capacity baseline.
We believe that our two-stage framework is general and applicable
to many different relighting problems and real-time applications,
including volumetric rendering, and building cross-identity face
models, which can be addressed in future work.
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