描述
在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌。
主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过。
小Hi注意到在桥头有一张小纸片,于是控制主角捡起了这张纸片,只见上面写着:
将M块骨牌首尾相连放置于石桥的凹糟中,即可关闭火焰墙。切记骨牌需要数字相同才能连接。 ——By 无名的冒险者
小Hi和小Ho打开了主角的道具栏,发现主角恰好拥有M快骨牌。
小Ho:也就是说要把所有骨牌都放在凹槽中才能关闭火焰墙,数字相同是什么意思?
小Hi:你看,每一块骨牌两端各有一个数字,大概是只有当数字相同时才可以相连放置,比如:
小Ho:原来如此,那么我们先看看能不能把所有的骨牌连接起来吧。
输入
第1行:2个正整数,N,M。分别表示骨牌上出现的最大数字和骨牌数量。1≤N≤1,000,1≤M≤5,000
第2..M+1行:每行2个整数,u,v。第i+1行表示第i块骨牌两端的数字(u,v),1≤u,v≤N
输出
第1行:m+1个数字,表示骨牌首尾相连后的数字
比如骨牌连接的状态为(1,5)(5,3)(3,2)(2,4)(4,3),则输出”1 5 3 2 4 3”
你可以输出任意一组合法的解。
样例输入
5 5
3 5
3 2
4 2
3 4
5 1
样例输出
1 5 3 4 2 3
思路
从一个奇数度的节点开始进行dfs
,在dfs的时候删去这个点连得所有边,最后利用dfs的特性,点的出栈顺序就是答案
代码
#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
const int N=10000+50;
int in[N];
int first[N],tot,len=0;
stack<int>s;
struct node
{
int v,next,flag;
} e[N];
void add_edge(int u,int v)
{
e[tot].v=v;
e[tot].flag=0;
e[tot].next=first[u];
first[u]=tot++;
}
void init()
{
mem(first,-1);
mem(in,0);
tot=0;
}
void dfs(int u)
{
for(int i=first[u]; ~i; i=e[i].next)
{
int v=e[i].v;
if(!e[i].flag)
{
e[i].flag=1;
e[i^1].flag=1;
dfs(v);
}
}
s.push(u);
}
int main()
{
int n,m,u,v;
scanf("%d%d",&n,&m);
init();
for(int i=1; i<=m; i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
in[u]++,in[v]++;
}
u=1;
for(int i=2; i<=n; i++)
if(in[i]&1)
{
u=i;
break;
}
dfs(u);
while(s.size()>1)
{
printf("%d ",s.top());
s.pop();
}
printf("%d\n",s.top());
return 0;
}