卷积神经网络的应用

1. 目标检测

目标检测是计算机视觉领域中一个重要的课题,主要任务是从图像中定位感兴趣的目标,需要准确地判断每个目标的具体类别,并给出每个目标的边界框。近年来 ,目标检测在智能视频监控、车辆自动驾驶 、机器人环境感知等领域都有着广泛的应用。然而,由于视角、遮挡、姿态等因素引起目标发生形变,导致目标检测成一个具有挑战性的任务[9]。目标检测任务可分为两个部分:目标分类和目标定位. 目标分类负责判断输入图像中的目标的类别;目标定位负责确定输入图像中的目标所在的位置.通过输出物体的包围盒或物体中心或物体的闭合边界等确定对象的位置,最常用的是方形包围盒[10].目标检测的作用是判断检测目标的类别,其监测的对象是定位的图像中特定物体所出现的区域,这一应用是计算机视觉领域的一项基本内容。其检测的目的更加注重图像的局部区域与特定物体的类别集合,是一个比图像识别更加复杂的识别问题。比较旧的目标检测算法主要的使用原理是利用设计人的先验知识,然后获取样本中的手工设计特点,使用比较少的参数,效率会提升[7]。

2. 图像分类

图像分类,即给定一幅输入图像,通过某种分类算法来判断该图像所属的类别。图像分类的划分方式十分多样,划分依据不同,分类结果就不同。 根据图像语义的不同可将图像分类为对象分类、场景分类、事件分类、情感分类。图像分类的主要流程包括图像预处理、图像特征描述和提取以及分类器的设计。预处理包括图像滤波(例如中值滤波、均值滤波、高斯滤波等)和尺寸的归一化等操作,其目的是为了方便目标图像后续处理;图像特征是对凸显特性或属性的描述,每一幅图像都有其本身的一些特征,特征提取,即根据图像本身的特征,按照某种既定的图像分类方式来选取合适的特征并进行有效的提取;分类器就是按照所选取的特征来对目标图像进行分类的一种算法[8]。图像分类是比较重要的应用,作用是利用计算机依据图片的内容进行分类,并进行语义类别的标记,对象是特定的一张照片[7]。通过卷积神经网络进行图像分类较之传统的图像分类方法最大的优势在于不需要针对特定的图像数据集或分类方式提取具体的人工特征,而是模拟大脑的视觉处理机制对图像层次化的抽象,自动筛选特征,从而实现对图像个性化的分类任务。这很好的解决了传统图像分类方法中人工提取特征这一难题,真正的实现了智能化。

3. 图像语义分割

在近几年,人们对人工智能比较重视,因此,对计算机视觉和机器学习等方向的研究比较多,随着其研究的加深,专业人员讲重点放在了图像本身,对其进行更加准确的分析和了解。而图像语义分割正是在这样的情况下提出来的,图像进行分割之后,对其分割后所有分割区域与像素的语义类别进行分类,且可以准确识别,旧的图像语义分割步骤有3种,其一图像的底层分割,将图片划分成多个小的区域;其二是获得小区域的底层特点,比如,形状特征、颜色等;其三是从底层的特点到高层的语义空间的映射,其目的是为了识别图像的具体区域与图像的每一个像素的语义种类[7]。

4. 人脸识别

人脸识别技术是利用计算机进行人脸图像分析,并从图片中提取出有效的识别信息进行身份验证的一种技术,广泛应用于门禁系统、摄像监视系统、学生考勤系统以及智能手机等领域。然而,对于人脸来说,个体之间结构相似,人脸会由于个体喜怒哀乐的情绪变化带来脸部形状的变化,并且光照条件、遮挡物、拍摄角度等都使人脸识别变得困难[11]。人脸识别对计算机视觉方面是一个比较大的难题,技术比较难实现,其目的分为人脸验证与人脸辨别。人脸验证的目的是为了辨别出任意 2 张人脸是否为一个人的,这是一个二分类的问题,随机猜测的正确概率为50%。人脸辨别的目的是把一个未知的人脸照片分割成几个身份类型之一,是多分类题目,随机猜测的正确概率为N分之一,其正确率比人脸验证更低,因此其挑战更大[7]。

参考文献

[7]杨风光. 深度卷积神经网络在计算机视觉领域的应用[J].《计算机网络》,2020年第4期40-41.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BoBo玩ROS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值