数学基础_若要使骰子(六个面)的每个数都出现至少一次,那么平均需要掷多少次骰子?

本文详细解析了掷骰子直到所有数字至少出现一次的问题。通过分解目标变量并利用几何分布的性质,推导出了期望掷骰子次数的精确计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记每个数字都出现(首次出现)的总数为X,题目中的意思也就是求E(X).由于X的分布相当复杂,我们就绕开它,考虑将X分解。

令X1 = 1,它表示出现第一个数字需要掷的次数。注意:这里第一个数字是指第一个出现的数字,并不是指哪一个固定的数字,所以才有X1 = 1。

然后以X2表示为了掷出第二个数字(即只要不是第一个出现的那个数字)再需要掷的次数。同样地,以X3表示为了掷出第三个数字(即除了前面两个已经出现的数字外,再出现的一个新数字)再需要掷的次数。以此类推,同样我们定义X4,X5,X6。这样一来,就有X = X1 + X2 + X3 + X4 + X5 + X6。

所以我们可以推出E(X) = E(X1 + X2 +X3 + X4 + X5 + X6) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6)。

易得,E(X1) = 1。Xi(i >= 2 )实际上就是等待新的数字出现需要的等待时间,服从几何分布。每次投掷时新数字出现的概率为[1 - (i -1)/6] (因为已经出现过i -1种数字),几何分布的期望值就是其概率的倒数,所以E(X2) = 6/5,E(X3) = 6/4,E(X4) = 6/3,E(X5) = 6/2,E(X6) = 6/1。

所以E(X) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6) =49/3

在处理骰子问题时,生成函提供了一种强大的工具来分析和解决与概率和期望值相关的问题。《IOI2018:骰子问题的生成函解法探析》这篇论文详细探讨了如何运用生成函来解决此类问题,提供了严谨的数学基础和实际应用的范例。 参考资源链接:[IOI2018:骰子问题的生成函解法探析](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44d9f?spm=1055.2569.3001.10343) 首先,我们需要理解生成函的基本概念。在骰子问题中,生成函通常被用来表示随机变量的分布。对于单个骰子,其生成函可以定义为每个出现的概率与对应的乘积之和。例如,一个标准六骰子的生成函为G(x) = (1/6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)。 当骰子问题涉及到多个骰子或者特定的序列时,生成函的乘法性质变得至关重要。如果要计算连续出三个六的概率,我们将每个骰子的生成函G(x)相乘三次,得到新的生成函G(x)^3。然后,可以通过展开这个函并查找x^18的系来找到连续三次出六的概率。 对于期望值的计算,我们可以使用生成函的导来帮助我们。生成函的导G'(x)与原始生成函G(x)的关系反映了随机变量期望值的计算方法。特别是,如果我们要求解连续出三个相同点的概率期望值,可以先求出这个特定序列的生成函G_n(x),然后对其求导得到G'_n(x),并将x=1代入计算得到期望值。 结合《IOI2018:骰子问题的生成函解法探析》中提供的实例和详细推导,你可以学习如何建立生成函、计算概率和期望值,并通过具体问题的分析加深理解。通过这种方法,你将能够解决更复杂的概率问题,提高在算法竞赛中的竞争力。 参考资源链接:[IOI2018:骰子问题的生成函解法探析](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44d9f?spm=1055.2569.3001.10343)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rocky Ding*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值