下面的Python代码是基于高斯渲染的三维场景训练系统。请解释代码内容,给每一行代码添加注释。
def training():
training_args = cfg.train
optim_args = cfg.optim
data_args = cfg.data
start_iter = 0
tb_writer = prepare_output_and_logger()
dataset = Dataset()
gaussians = StreetGaussianModel(dataset.scene_info.metadata)
scene = Scene(gaussians=gaussians, dataset=dataset)
gaussians.training_setup()
try:
if cfg.loaded_iter == -1:
loaded_iter = searchForMaxIteration(cfg.trained_model_dir)
else:
loaded_iter = cfg.loaded_iter
ckpt_path = os.path.join(cfg.trained_model_dir, f'iteration_{loaded_iter}.pth')
state_dict = torch.load(ckpt_path)
start_iter = state_dict['iter']
print(f'Loading model from {ckpt_path}')
gaussians.load_state_dict(state_dict)
except:
pass
print(f'Starting from {start_iter}')
save_cfg(cfg, cfg.model_path, epoch=start_iter)
gaussians_renderer = StreetGaussianRenderer()
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
ema_loss_for_log = 0.0
ema_psnr_for_log = 0.0
psnr_dict = {}
progress_bar = tqdm(range(start_iter, training_args.iterations))
start_iter += 1
viewpoint_stack = None
for iteration in range(start_iter, training_args.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Every 1000 iterations upsample
# if iteration % 1000 == 0:
# if resolution_scales:
# scale = resolution_scales.pop()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam: Camera = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
# ====================================================================
# Get mask
# original_mask: pixel in original_mask with 0 will not be surpervised
# original_acc_mask: use to suepervise the acc result of rendering
# original_sky_mask: sky mask
gt_image = viewpoint_cam.original_image.cuda()
if hasattr(viewpoint_cam, 'original_mask'):
mask = viewpoint_cam.original_mask.cuda().bool()
else:
mask = torch.ones_like(gt_image[0:1]).bool()
if hasattr(viewpoint_cam, 'original_sky_mask'):
sky_mask = viewpoint_cam.original_sky_mask.cuda()
else:
sky_mask = None
if hasattr(viewpoint_cam, 'original_obj_bound'):
obj_bound = viewpoint_cam.original_obj_bound.cuda().bool()
else:
obj_bound = torch.zeros_like(gt_image[0:1]).bool()
if (iteration - 1) == training_args.debug_from:
cfg.render.debug = True
render_pkg = gaussians_renderer.render(viewpoint_cam, gaussians)
image, acc, viewspace_point_tensor, visibility_filter, radii = render_pkg["rgb"], render_pkg['acc'], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
depth = render_pkg['depth'] # [1, H, W]
scalar_dict = dict()
# rgb loss
Ll1 = l1_loss(image, gt_image, mask)
scalar_dict['l1_loss'] = Ll1.item()
loss = (1.0 - optim_args.lambda_dssim) * optim_args.lambda_l1 * Ll1 + optim_args.lambda_dssim * (1.0 - ssim(image, gt_image, mask=mask))
# sky loss
if optim_args.lambda_sky > 0 and gaussians.include_sky and sky_mask is not None:
acc = torch.clamp(acc, min=1e-6, max=1.-1e-6)
sky_loss = torch.where(sky_mask, -torch.log(1 - acc), -torch.log(acc)).mean()
if len(optim_args.lambda_sky_scale) > 0:
sky_loss *= optim_args.lambda_sky_scale[viewpoint_cam.meta['cam']]
scalar_dict['sky_loss'] = sky_loss.item()
loss += optim_args.lambda_sky * sky_loss
# semantic loss
if optim_args.lambda_semantic > 0 and data_args.get('use_semantic', False) and 'semantic' in viewpoint_cam.meta:
gt_semantic = viewpoint_cam.meta['semantic'].cuda().long() # [1, H, W]
if torch.all(gt_semantic == -1):
semantic_loss = torch.zeros_like(Ll1)
else:
semantic = render_pkg['semantic'].unsqueeze(0) # [1, S, H, W]
semantic_loss = torch.nn.functional.cross_entropy(
input=semantic,
target=gt_semantic,
ignore_index=-1,
reduction='mean'
)
scalar_dict['semantic_loss'] = semantic_loss.item()
loss += optim_args.lambda_semantic * semantic_loss
if optim_args.lambda_reg > 0 and gaussians.include_obj and iteration >= optim_args.densify_until_iter:
render_pkg_obj = gaussians_renderer.render_object(viewpoint_cam, gaussians)
image_obj, acc_obj = render_pkg_obj["rgb"], render_pkg_obj['acc']
acc_obj = torch.clamp(acc_obj, min=1e-6, max=1.-1e-6)
# box_reg_loss = gaussians.get_box_reg_loss()
# scalar_dict['box_reg_loss'] = box_reg_loss.item()
# loss += optim_args.lambda_reg * box_reg_loss
obj_acc_loss = torch.where(obj_bound,
-(acc_obj * torch.log(acc_obj) + (1. - acc_obj) * torch.log(1. - acc_obj)),
-torch.log(1. - acc_obj)).mean()
scalar_dict['obj_acc_loss'] = obj_acc_loss.item()
loss += optim_args.lambda_reg * obj_acc_loss
# obj_acc_loss = -((acc_obj * torch.log(acc_obj) + (1. - acc_obj) * torch.log(1. - acc_obj))).mean()
# scalar_dict['obj_acc_loss'] = obj_acc_loss.item()
# loss += optim_args.lambda_reg * obj_acc_loss
# lidar depth loss
if optim_args.lambda_depth_lidar > 0 and 'lidar_depth' in viewpoint_cam.meta:
lidar_depth = viewpoint_cam.meta['lidar_depth'].cuda() # [1, H, W]
depth_mask = torch.logical_and((lidar_depth > 0.), mask)
# depth_mask[obj_bound] = False
if torch.nonzero(depth_mask).any():
expected_depth = depth / (render_pkg['acc'] + 1e-10)
depth_error = torch.abs((expected_depth[depth_mask] - lidar_depth[depth_mask]))
depth_error, _ = torch.topk(depth_error, int(0.95 * depth_error.size(0)), largest=False)
lidar_depth_loss = depth_error.mean()
scalar_dict['lidar_depth_loss'] = lidar_depth_loss
else:
lidar_depth_loss = torch.zeros_like(Ll1)
loss += optim_args.lambda_depth_lidar * lidar_depth_loss
# color correction loss
if optim_args.lambda_color_correction > 0 and gaussians.use_color_correction:
color_correction_reg_loss = gaussians.color_correction.regularization_loss(viewpoint_cam)
scalar_dict['color_correction_reg_loss'] = color_correction_reg_loss.item()
loss += optim_args.lambda_color_correction * color_correction_reg_loss
# pose correction loss
if optim_args.lambda_pose_correction > 0 and gaussians.use_pose_correction:
pose_correction_reg_loss = gaussians.pose_correction.regularization_loss()
scalar_dict['pose_correction_reg_loss'] = pose_correction_reg_loss.item()
loss += optim_args.lambda_pose_correction * pose_correction_reg_loss
# scale flatten loss
if optim_args.lambda_scale_flatten > 0:
scale_flatten_loss = gaussians.background.scale_flatten_loss()
scalar_dict['scale_flatten_loss'] = scale_flatten_loss.item()
loss += optim_args.lambda_scale_flatten * scale_flatten_loss
# opacity sparse loss
if optim_args.lambda_opacity_sparse > 0:
opacity = gaussians.get_opacity
opacity = opacity.clamp(1e-6, 1-1e-6)
log_opacity = opacity * torch.log(opacity)
log_one_minus_opacity = (1-opacity) * torch.log(1 - opacity)
sparse_loss = -1 * (log_opacity + log_one_minus_opacity)[visibility_filter].mean()
scalar_dict['opacity_sparse_loss'] = sparse_loss.item()
loss += optim_args.lambda_opacity_sparse * sparse_loss
# normal loss
if optim_args.lambda_normal_mono > 0 and 'mono_normal' in viewpoint_cam.meta and 'normals' in render_pkg:
if sky_mask is None:
normal_mask = mask
else:
normal_mask = torch.logical_and(mask, ~sky_mask)
normal_mask = normal_mask.squeeze(0)
normal_mask[:50] = False
normal_gt = viewpoint_cam.meta['mono_normal'].permute(1, 2, 0).cuda() # [H, W, 3]
R_c2w = viewpoint_cam.world_view_transform[:3, :3]
normal_gt = torch.matmul(normal_gt, R_c2w.T) # to world space
normal_pred = render_pkg['normals'].permute(1, 2, 0) # [H, W, 3]
normal_l1_loss = torch.abs(normal_pred[normal_mask] - normal_gt[normal_mask]).mean()
normal_cos_loss = (1. - torch.sum(normal_pred[normal_mask] * normal_gt[normal_mask], dim=-1)).mean()
scalar_dict['normal_l1_loss'] = normal_l1_loss.item()
scalar_dict['normal_cos_loss'] = normal_cos_loss.item()
normal_loss = normal_l1_loss + normal_cos_loss
loss += optim_args.lambda_normal_mono * normal_loss
scalar_dict['loss'] = loss.item()
loss.backward()
iter_end.record()
is_save_images = True
if is_save_images and (iteration % 1000 == 0):
# row0: gt_image, image, depth
# row1: acc, image_obj, acc_obj
depth_colored, _ = visualize_depth_numpy(depth.detach().cpu().numpy().squeeze(0))
depth_colored = depth_colored[..., [2, 1, 0]] / 255.
depth_colored = torch.from_numpy(depth_colored).permute(2, 0, 1).float().cuda()
row0 = torch.cat([gt_image, image, depth_colored], dim=2)
acc = acc.repeat(3, 1, 1)
with torch.no_grad():
render_pkg_obj = gaussians_renderer.render_object(viewpoint_cam, gaussians)
image_obj, acc_obj = render_pkg_obj["rgb"], render_pkg_obj['acc']
acc_obj = acc_obj.repeat(3, 1, 1)
row1 = torch.cat([acc, image_obj, acc_obj], dim=2)
image_to_show = torch.cat([row0, row1], dim=1)
image_to_show = torch.clamp(image_to_show, 0.0, 1.0)
os.makedirs(f"{cfg.model_path}/log_images", exist_ok = True)
save_img_torch(image_to_show, f"{cfg.model_path}/log_images/{iteration}.jpg")
with torch.no_grad():
# Log
tensor_dict = dict()
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_psnr_for_log = 0.4 * psnr(image, gt_image, mask).mean().float() + 0.6 * ema_psnr_for_log
if viewpoint_cam.id not in psnr_dict:
psnr_dict[viewpoint_cam.id] = psnr(image, gt_image, mask).mean().float()
else:
psnr_dict[viewpoint_cam.id] = 0.4 * psnr(image, gt_image, mask).mean().float() + 0.6 * psnr_dict[viewpoint_cam.id]
if iteration % 10 == 0:
progress_bar.set_postfix({"Exp": f"{cfg.task}-{cfg.exp_name}",
"Loss": f"{ema_loss_for_log:.{7}f},",
"PSNR": f"{ema_psnr_for_log:.{4}f}"})
progress_bar.update(10)
if iteration == training_args.iterations:
progress_bar.close()
# Log and save
if (iteration in training_args.save_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < optim_args.densify_until_iter:
gaussians.set_visibility(include_list=list(set(gaussians.model_name_id.keys()) - set(['sky'])))
gaussians.parse_camera(viewpoint_cam)
gaussians.set_max_radii2D(radii, visibility_filter)
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
prune_big_points = iteration > optim_args.opacity_reset_interval
if iteration > optim_args.densify_from_iter:
if iteration % optim_args.densification_interval == 0:
scalars, tensors = gaussians.densify_and_prune(
max_grad=optim_args.densify_grad_threshold,
min_opacity=optim_args.min_opacity,
prune_big_points=prune_big_points,
)
scalar_dict.update(scalars)
tensor_dict.update(tensors)
# Reset opacity
if iteration < optim_args.densify_until_iter:
if iteration % optim_args.opacity_reset_interval == 0:
gaussians.reset_opacity()
if data_args.white_background and iteration == optim_args.densify_from_iter:
gaussians.reset_opacity()
training_report(tb_writer, iteration, scalar_dict, tensor_dict, training_args.test_iterations, scene, gaussians_renderer)
# Optimizer step
if iteration < training_args.iterations:
gaussians.update_optimizer()
if (iteration in training_args.checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
state_dict = gaussians.save_state_dict(is_final=(iteration == training_args.iterations))
state_dict['iter'] = iteration
ckpt_path = os.path.join(cfg.trained_model_dir, f'iteration_{iteration}.pth')
torch.save(state_dict, ckpt_path)
最新发布