Spark实现xgboost多分类(python)

1. spark-xgboost Java包

主要需要xgboost4j-spark-0.90.jar, xgboost4j-0.90.jar, 以及 调用代码 sparkxgb.zip.

GitHub上面有xgboost java 实现的包,链接:xgboost;

但我省事,用了zhihu xgboost的分布式版本(pyspark)使用测试 的下载链接。
注意,xgboost 的版本号 和sparkxgb内的内容对应。

2. xgboost多分类

我是使用pyspark 运行,通过 pyspark --jars ** 把用到的这两个jar包引入。

#!/usr/bin/env python
# -*- coding:utf8 -*-

import os
import sys
import time
import pandas as pd
import numpy as np
from pyspark import SparkConf, SparkContext
import pyspark.sql.types as typ
import pyspark.ml.feature as ft
from pyspark.sql.functions import isnan, isnull,col
import pyspark
from pyspark.sql.session import SparkSession
from pyspark.sql import SQLContext
from pyspark.sql.types import *
from pyspark.ml.feature import StringIndexer,VectorAssembler
from pyspark.ml.linalg import Vectors
from pyspark.ml import Pipeline
from sparkxgb import XGBoostClassifier

import sklearn.datasets as datasets
import numpy as np
import time

def normalize(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

def get_data():
    # input datasets
    X, y = datasets.make_blobs(n_samples=100000, centers=10,
                               n_features=10, random_state=0)
    # 归一化
    X_norm = normalize(X)
    X_train = X_norm[:int(len(X_norm) * 0.8)]
    X_test = X_norm[int(len(X_norm) * 0.8):]
    y_train = y[:int(len(X_norm) * 0.8)]
    y_test = y[int(len(X_norm) * 0.8):]
    y_train = y_train.reshape(-1, 1)
    # spark df
    df = np.concatenate([y_train, X_train], axis=1)
    train_df = map(lambda x: (int(x[0]), Vectors.dense
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值