Pytorch cannot allocate memory 解决内存不足问题

本文介绍了一种解决GPU内存不足的方法,包括使用Python的gc模块进行内存回收,以及利用PyTorch的cuda.empty_cache()函数释放显存。通过删除大型变量并调用垃圾回收和显存清理函数,可以有效避免GPU内存溢出问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 内存不够

解决方法:尽量把显存的内存释放掉,具体可以通过 gc 进行内存回收,以及把显存释放。

del X_train, y_train, X_valid, y_valid
gc.collect()
torch.cuda.empty_cache()
# torch.cuda.clear_memory_allocated()  # entirely clear all allocated memory
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值